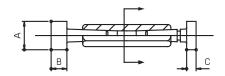


Calibri fissi Passa-Non Passa



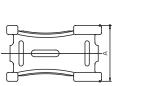





Impiegati per il controllo di fori (tamponi) od alberi (anelli – forcelle).

A secondo delle esigenze di impiego sono prodotti con forme e caratteristiche dimensionali diverse con riferimento a norme unificate (DIN, ANSI ....)

## Tamponi Lisci Differenziali P-NP Sigla TLD

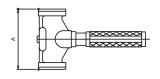





Costruiti in acciaio per calibri cementato e temprato durezza HRC 62 ÷ 64.

| ØA mm da-a | В  | C   | H    |
|------------|----|-----|------|
| 3 - 4      | 8  | 5   | 7,6  |
| 4 - 6      | 8  | 5   | 7,6  |
| 6 - 10     | 10 | 6,5 | 10   |
| 10 - 14    | 10 | 8   | 12,3 |
| 14 - 18    | 12 | 8   | 15,7 |
| 18 - 24    | 16 | 12  | 19,4 |
| 24 - 33    | 20 | 16  | 19,4 |
| 33 - 40    | 21 | 16  | 26,7 |
| 40 - 50    | 25 | 20  | 26,7 |
| 50 - 75    | 30 | 20  | 30,8 |

## Tamponi Piatti Differenziali P-NP Sigla TPI



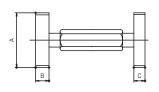



| Realizzati  | con   | fusioni   | stampate    | in  | acciaio | temprato |
|-------------|-------|-----------|-------------|-----|---------|----------|
| nelle zone  | di c  | ontrollo  | con durez   | zza | HRC 62  | 2÷64.    |
| Sono utiliz | zzati | per il co | ontrollo di | un  | settore | di fori. |

| ØA mm da-a | В  |
|------------|----|
| 22 - 28    | 10 |
| 28 - 36    | 10 |
| 36 - 45    | 12 |
| 45 - 55    | 13 |
| 55 - 70    | 14 |
| 70 - 86    | 15 |
| 86 - 103   | 15 |

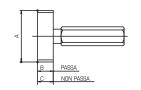
## Tamponi Piatti a Coppia P-NP Sigla TPCI






| ØA mm da-a | В  |
|------------|----|
| 103 - 114  | 15 |
| 114 - 125  | 15 |
| 125 - 138  | 16 |
| 138 - 153  | 18 |
| 153 - 168  | 20 |
| 168 - 185  | 22 |
| 185 - 204  | 24 |

Realizzati con fusioni stampate in acciaio temprato nelle zone di controllo con durezza HRC 62÷64. Sono utilizzati per il controllo di un settore di fori.




# **Bordioni Differenziali P-NP** Sigla **BRF ØA** mm da-2 50 - 75

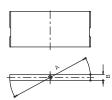


| mm da-a المر | ש  | U  | Ш  |
|--------------|----|----|----|
| 50 - 75      | 25 | 20 | 25 |
| 75 - 100     | 25 | 20 | 35 |
| 100 - 125    | 25 | 20 | 35 |
| 125 - 150    | 25 | 20 | 35 |
|              |    |    |    |

## Bordioni Semplici P-NP Sigla BRS



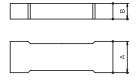
Costruiti in acciaio per calibri cementato e temprato


durezza HRC 62 ÷ 64.

| ØA mm da-a | В  | C  | Н  |
|------------|----|----|----|
| 50 - 75    | 25 | 20 | 25 |
| 75 - 125   | 25 | 20 | 35 |
| 125 - 500  | 25 | 20 | 35 |

Costruiti in acciaio per calibri cementato e temprato durezza HRC 62 ÷ 64.

Bordioni P-NP


Sigla **BRE** 



| ØA mm da-a | В | ØA mm da-a | В  |
|------------|---|------------|----|
| 16 - 25    | 4 | 200 - 250  | 7  |
| 25 - 40    | 4 | 250 - 300  | 8  |
| 40 - 63    | 4 | 300 - 350  | 8  |
| 63 - 100   | 5 | 350 - 400  | 8  |
| 100 - 150  | 5 | 400 - 500  | 10 |
| 150 - 200  | 6 | 500 - 600  | 10 |

Costruiti in acciaio per calibri durezza HRC 62÷64 (HRC 59÷61 per diametri oltre 100).

## Riscontri Differenziali P-NP Sigla RISD



| ØA mm da-a | В  |
|------------|----|
| 0,4 - 2    | 8  |
| 2 - 5      | 10 |
| 5 - 15     | 10 |
| 15 - 30    | 10 |
| 30 - 45    | 10 |
| 45 - 63    | 10 |

Costruiti in acciaio per calibri temprato durezza HRC 62 ÷ 64.

## Tamponi Lisci Reversibili Sigla TLR



Per quote da 0,2 a 19,45 mm.

Vengono impiegati per il controllo completo di fori con dimensione Passa e Non Passa.

Sono così composti:

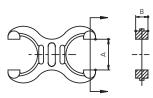
- Parti calibranti Lato Passa Non Passa con spine cilindriche in acciaio per calibri durezza 61 ÷ 64 HRC, lunghezza mm 50
- Impugnatura con ghiere di bloccaggio per le parti calibranti

La composizione modulare offre il vantaggio di poter impiegare la parte calibrata prima da un lato e successivamente (quando questo risulta usurato) dal lato opposto.

## Spine Cilindriche Sigla SCY



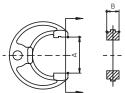
Spine cilindriche calibrate lunghezza 50 mm con le sequenti caratteristiche:


- Tolleranza di costruzione: ± 0,001 mm.
- Rugosità: inferiore a 0,025 micron Ra.
- Rotondità: inferiore a 0,0005 mm.
- Conicità: inferiore a 0,001 mm.
- Durezza: 61÷64 Rockwell C.

Sono disponibili dal Ø 0,5 al Ø 10 mm.

| ØA mm da-a  | lunghezza |
|-------------|-----------|
| 0,20-0,76   | 38        |
| 0,76-1,90   | 50        |
| 1,90-4,50   | 50        |
| 4,50-7,15   | 50        |
| 7,15-10,30  | 50        |
| 10,30-13,00 | 50        |
| 13,00-16,25 | 50        |
| 16,25-19,45 | 50        |




## Forcelle Stampate Differenziali Doppie Sigla FSD



Realizzate con fusioni stampate in acciaio temprato nelle zone di controllo con durezza HRC 62÷64.

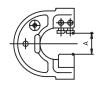
| ØA mm da-a | В   | ØA mm da-a | В    |
|------------|-----|------------|------|
| 3 - 6      | 6,5 | 56 - 63    | 11,5 |
| 6 - 10     | 7,5 | 63 - 70    | 11,5 |
| 10 - 14    | 7,5 | 70 - 77    | 12   |
| 14 - 18    | 8   | 77 - 84    | 15   |
| 18 - 21    | 8   | 84 - 92    | 15   |
| 21 - 27    | 8   | 92 - 100   | 15   |
| 27 - 32    | 9   |            |      |
| 32 - 38    | 9   |            |      |
| 38 - 43    | 10  |            |      |
| 43 - 49    | 10  |            |      |
| 49 - 56    | 10  |            |      |

## Forcelle Stampate Differenziali Progressive Sigla FSP



Realizzate con fusioni stampate in acciaio temprato nelle zone di controllo con durezza HRC 62÷64.

| ØA mm da-a | В  | ØA mm da-a | В  |
|------------|----|------------|----|
| 3 - 10     | 7  | 70 - 77    | 13 |
| 10 - 14    | 8  | 77 - 84    | 14 |
| 14 - 18    | 8  | 84 - 92    | 14 |
| 18 - 22    | 9  | 92 - 100   | 14 |
| 22 - 26    | 9  | 100 - 115  | 16 |
| 26 - 31    | 10 | 115 - 130  | 18 |
| 31 - 36    | 10 | 130 - 145  | 18 |
| 36 - 42    | 11 | 145 - 160  | 18 |
| 42 - 49    | 11 | 160 - 175  | 20 |
| 49 - 56    | 12 | 175 - 190  | 20 |
| 56 - 63    | 12 | 190 - 205  | 20 |
| 63 - 70    | 13 |            |    |

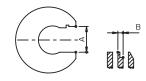

## Forcelle Registrabili tipo Normale Sigla FRI



Realizzate con fusioni stampate in acciaio. Parti calibranti registrabili in acciaio per calibri temprato HRC 62÷64. Vengono fornite già registrate alla misura richiesta.

| ØA mm da-a | Tipo | ØA mm da-a | Tipo |
|------------|------|------------|------|
| 0 - 13     | 1    | 178 - 203  | 9    |
| 13 - 25    | 2    | 203 - 229  | 10   |
| 25 - 38    | 3    |            |      |
| 38 - 51    | 4    |            |      |
| 51 - 64    | 5    |            |      |
| 64 - 76    | 6    |            |      |
| 76 - 95    | 7    |            |      |
| 95 - 114   | 8    |            |      |
| 114 - 133  | 14   |            |      |
| 133 - 152  | 15   |            |      |
| 152 - 178  | 16   |            |      |

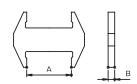
## Forcelle Registrabili tipo Sottotesta Sigla FRP




Realizzate con fusioni stampate in acciaio. Parti calibranti registrabili in acciaio per calibri temprato HRC 62÷64 o, a richiesta con riporti in lega dura. Vengono fornite già registrate alla misura richiesta.

| ØA mm da-a | Tipo | ØA mm da-a | Tipo |
|------------|------|------------|------|
| 0 - 6      | 1    | 87 - 97    | 14   |
| 6 - 13     | 2    | 97 - 106   | 15   |
| 13 - 19    | 3    | 106 - 117  | 16   |
| 19 - 26    | 4    | 117 - 125  | 17   |
| 26 - 32    | 5    | 125 - 135  | 18   |
| 32 - 38    | 6    | 135 - 144  | 19   |
| 38 - 44    | 7    | 144 - 155  | 20   |
| 44 - 51    | 8    | 155 - 168  | 21   |
| 51 - 57    | 9    | 168 - 181  | 22   |
| 57 - 64    | 10   | 181 - 194  | 23   |
| 64 - 70    | 11   | 194 - 206  | 24   |
| 70 - 78    | 12   | 206 - 219  | 25   |
| 78 - 87    | 13   |            |      |



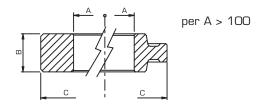

# Forcelle Differenziali Progressive P-NP in lamiera Sigla FPL



Realizzate in lamiera di acciaio per calibri temprato HRC 62÷64.

| ØA mm da-a | В | ØA mm da-a | В |
|------------|---|------------|---|
| 3 - 18     | 3 | 500 - 650  | 8 |
| 18 - 70    | 4 | 650 - 800  | 8 |
| 70 - 100   | 5 |            |   |
| 100 - 130  | 5 |            |   |
| 130 - 150  | 6 |            |   |
| 150 - 200  | 6 |            |   |
| 200 - 250  | 6 |            |   |
| 250 - 300  | 6 |            |   |
| 300 - 350  | 6 |            |   |
| 350 - 400  | 7 |            |   |
| 400 - 500  | 7 |            |   |

# Forcelle Doppie Differenziali P-NP in Lamiera Sigla FDL

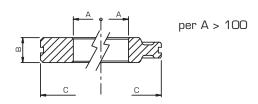



Realizzate in lamiera di acciaio per calibri temprato HRC 62÷64.

| ØA mm da-a | В | ØA mm da-a | В |
|------------|---|------------|---|
| 2,5 - 4    | 4 | 400 - 630  | 7 |
| 4 - 6      | 4 | 630 - 800  | 8 |
| 6 - 10     | 4 |            |   |
| 10 - 16    | 4 |            |   |
| 16 - 25    | 4 |            |   |
| 25 - 40    | 5 |            |   |
| 40 - 63    | 5 |            |   |
| 63 - 100   | 5 |            |   |
| 100 - 160  | 5 |            |   |
| 160 - 250  | 6 |            |   |
| 250 - 400  | 6 |            |   |

## Anelli Lisci Passa Sigla ALS-P






Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

| ØA mm da-a | В  | C   | ØA mm da-a | В  | C   |
|------------|----|-----|------------|----|-----|
| 1 - 2,5    | 6  | 22  | 60 - 70    | 32 | 112 |
| 2,5 - 5    | 10 | 22  | 70 - 80    | 32 | 125 |
| 5 - 10     | 12 | 32  | 80 - 90    | 32 | 140 |
| 10 - 15    | 14 | 38  | 90 - 100   | 32 | 160 |
| 15 - 20    | 16 | 45  | 100 - 110  | 28 | 170 |
| 20 - 25    | 18 | 53  | 110 - 120  | 28 | 180 |
| 25 - 32    | 20 | 63  | 120 - 130  | 28 | 190 |
| 32 - 40    | 24 | 71  | 130 - 140  | 28 | 200 |
| 40 - 50    | 32 | 85  | 140 - 150  | 28 | 212 |
| 50 - 60    | 32 | 100 | 150 - 160  | 28 | 224 |

## Anelli Lisci Non Passa Sigla ALS-NP





Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

| ØA mm da-a | В | C   | ØA mm da-a | В  | C   |
|------------|---|-----|------------|----|-----|
| 1 - 2,5    | 3 | 16  | 60 - 70    | 8  | 112 |
| 2,5 - 5    | 3 | 22  | 70 - 80    | 10 | 125 |
| 5 - 10     | 4 | 32  | 80 - 90    | 10 | 140 |
| 10 - 15    | 5 | 38  | 90 - 100   | 12 | 160 |
| 15 - 20    | 5 | 45  | 100 - 110  | 28 | 170 |
| 20 - 25    | 6 | 53  | 110 - 120  | 28 | 180 |
| 25 - 32    | 6 | 63  | 120 - 130  | 28 | 190 |
| 32 - 40    | 7 | 71  | 130 - 140  | 28 | 200 |
| 40 - 50    | 7 | 85  | 140 - 150  | 28 | 212 |
| 50 - 60    | 8 | 100 | 150 - 160  | 28 | 224 |





Utilizzati per il controllo di viti e madreviti.

Questi eseguono un controllo completo del profilo della filettatura includendo quindi, oltre al diametro medio, anche eventuali errori di angolo e di passo, diametri interni ed esterni, ed inoltre eventuali ammaccature e imperfezioni sul profilo.

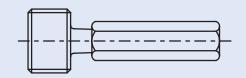
Ciò assicura l'accoppiamento dei manufatti (vite e madrevite).

MG è in grado di fornire ogni tipo di calibro filettato per le norme standard.

A richiesta è in grado di fornire anche calibri per controllo di filettature speciali.

| TIPO FILETTATURA          | NORME MANUFATTO       | NORME CALIBRI          |             |
|---------------------------|-----------------------|------------------------|-------------|
| Metrica                   | UNI 5870 - DIN 13     | UNI 5870               |             |
| Americana                 | ASME B1.1             | ANSI/ASME B1/2         |             |
| Americana BS 919          | ASME B1.1             | BS 919                 |             |
| NH – NHR – NPSH           | ASME B1.20.7          | ASME B.1.20.7          |             |
| NGO                       | ANSI B57.1            | ANSI/ASME B1.2         |             |
| Metrica                   | DIN 13                | UNI 5870               |             |
| Helicoil                  | OTALU                 | OTALU                  |             |
| Sistema internazionale SI | TAB. 56934            | TAB. 56934             | 30 30       |
| Vg                        | DIN 7756              | UNI 5870               | T ( )       |
| V1-1 V1-2 / V2-1 V2-2     | ETRTO                 | UNI 5870               | 0.541264p   |
| Viti trilobate            | UNI 8109              | UNI 5870               | <u> </u>    |
| Metriche FIAT             | TAB 01550             | TAB 63137/00           |             |
| Metriche FIAT             | TAB 01560 – TAB 01505 | Classe 6 h – Classe 6H |             |
| Metriche FIAT             | TAB 01561             | Classe 4h – Classe 4H  |             |
| Metriche FIAT             | TAB 01546             | TAB 63137/02           |             |
| Metriche FIAT             | TAB 01580             | TAB 63145 - TAB 63148  |             |
| Metrica                   | DT 10-06              | UNI 5870               |             |
| Metriche Francesi         | NFE 03-151            | Tamponi NFE 03-153     |             |
|                           |                       | Anelli NFE 03-152      |             |
| Dente di sega             | Butress BS 1657       | Butress BS 1657        | *** - 1/-   |
|                           |                       |                        | <u>:</u>    |
|                           |                       |                        |             |
| Dente di sega             | Butress ANSI B1.9     | Butress ANSI B1.9      | - 6         |
|                           |                       |                        |             |
|                           |                       |                        | <u>-</u>    |
| ACME                      | ASME/ANSI B1.5        | ASME B1.5              | 14.5        |
|                           |                       |                        |             |
|                           |                       |                        | <u> </u>    |
| STUB ACME                 | ASME/ANSI B1/8        | ASME ANSI B1.8         | 143. 145.   |
| OTOB AGIVIE               | ACIVIL/AIVOI D 1/C    | AGIVIL AIVOI DT.O      | 7 7         |
|                           |                       |                        | <b>*</b>    |
|                           |                       | 1111110000011016       | <del></del> |
| Trapezoidale              | UNI ISO 2903          | UNI ISO 2901/2/3/4     | 7 7         |
| Trapezoidale DIN 103      | UNI ISO 2903          | UNI ISO 2903           | I /         |
| Trapezoidali Francesi     | NFE 03-615            | Tamponi NFE 03-620     | I -         |
|                           |                       |                        |             |

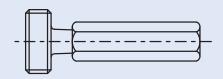



| TIPO FILETTATURA                       | NORME MANUFATTO       | NORME CALIBRI                |                                                   |
|----------------------------------------|-----------------------|------------------------------|---------------------------------------------------|
| Filetto tondo Rd                       | NFF 00-016            | NFF 00-017                   | \25e   12a/                                       |
| Raggiato Rd                            | DIN 405               | DIN 405                      | 1 0                                               |
|                                        | 2                     | 2                            |                                                   |
|                                        |                       |                              | 1                                                 |
| Gas o metrica raggiata                 | DIN 79012             | BS 919                       | 30 all                                            |
| BSC metrico raggiato                   | BS 811                | BS 919                       |                                                   |
| Raccordi di rubinetteria               | NFE 29-650            | 60° ANSI/ASME B1.2           | 8.51279                                           |
|                                        |                       |                              |                                                   |
| Filetto 80°                            | NFC 68-311            | NFC 68-311                   |                                                   |
| Filetto 80°                            | UTEC 68-312           | UTEC 68-312                  | 0.5054750                                         |
| PG                                     | DIN 40430             | DIN 40431                    | 10                                                |
|                                        |                       |                              |                                                   |
| Withworth                              | BS 84                 | BS 919                       | 1 \$1                                             |
| Gas                                    | UNI ISO 228           | UNI ISO 228                  |                                                   |
| Gas Francese                           | NFE 03-005            | Tamponi NFE 03-163           | 27.5 27.5                                         |
|                                        | 1,55 00 050           | Anelli NFE 03-162            |                                                   |
| Raccordi di rubinetteria               | NFE 29-650            | 55° Withworth                | 1 17                                              |
| Gas classe J                           | NFE 03-004            | NFE 03-163                   | +                                                 |
| Conica NPT                             | ANSI/ASME B1.20.1     | ANSI/ASME B1.20.1            |                                                   |
| Conica NPTF                            | ANSI B1.20.3          | ASME B1.20.5                 | 5-11-1 COM                                        |
| Conica NGT                             | ANSI B57/1            | ANSI B57/1                   | 1/1/2/2 /->T/\                                    |
| Metrica Conica                         | DIN 158               | DIN 158                      | N.V.V                                             |
|                                        |                       |                              | ~ F                                               |
| Can Carian DEF                         | NE EN COO 4           | NE EN COO O                  |                                                   |
| Gas Conico 25E                         | NF EN 629-1           | NF EN 629-2                  | -                                                 |
| Gas conici                             | NFE 03-165<br>DIN 477 | NFE 03-165                   | 2000 CONTRACTOR (CO. 10)                          |
| Gas Conica — Gas Cilindrica Gas conica | DIN 2999              | DIN 477 - BS 919<br>DIN 2999 | 1.                                                |
| Gas Conica                             | DIN 3858              | DIN 2999                     | 11/1                                              |
| Gas Conica                             | UNI 6125              | UNI 6125                     | 205 205                                           |
| Gas Conica                             | ISO 7                 | ISO 7                        | *                                                 |
| Conica BS 21                           | BS 21                 | BS 21                        | Anis of screw Pitch p                             |
| Conica BS 341                          | BS 341                | BS 341                       |                                                   |
| PT gas Conica                          | JIS B0203             | JIS B0253                    | -                                                 |
| BA                                     | BS 93                 | BS 93                        |                                                   |
| 5,1                                    | 20 00                 | 20 00                        | 1 A                                               |
|                                        |                       |                              | 1                                                 |
|                                        |                       |                              |                                                   |
|                                        |                       |                              | $\downarrow \uparrow \downarrow V$ $\downarrow V$ |
|                                        |                       |                              | 1                                                 |
| Dente di sega                          | DIN 513               | DIN 513                      | 3° 30°                                            |
|                                        |                       |                              | 7 7 -                                             |
|                                        |                       |                              | 0,75 p                                            |
|                                        |                       |                              |                                                   |
|                                        |                       |                              |                                                   |
| Edison                                 | DIN 40401             | DIN 40401                    |                                                   |
|                                        |                       |                              | $\bigcup_{\mathfrak{p}}$                          |
| Metrica acc. Cilindrico-Conico         | UNI 7707              | TAB. FIAT 63251              |                                                   |
| Metrica acc. Cilindrico-Conico         | TAB 01522 – TAB 01523 | TAB 63251                    | Hr. Cl.                                           |
| Tenuta sul filetto                     | IVECO TAB 10-3221     | TAB 63251                    |                                                   |
|                                        |                       |                              | 4 4                                               |
|                                        |                       |                              |                                                   |
|                                        |                       |                              | 1                                                 |



## **Tamponi Filettati Semplici Passa** Sigla **TFS-P**

Per il controllo completo di madreviti con dimensione Passa.


Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.



## **Tamponi Filettati Semplici Non Passa** Sigla **TFS-NP**

Per il controllo completo di madreviti con dimensione Non Passa.

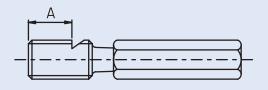
Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.



## **Tamponi Filettati Differenziali P-NP** Sigla **TFD**

Per il controllo completo di madreviti con dimensione Passa e Non Passa.

Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.



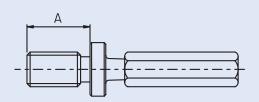

# Tamponi Filettati Passa con tacca per controllo profondità Sigla TFT

Per il controllo completo di madreviti con dimensione Passa e della profondità utile del filetto con controllo visivo riferito ad una tacca eseguita sul calibro (definita nelle specifiche d'ordine).

Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.

Precisare in ordine se la quota A origina dal piano di intestatura o dal primo filetto completo.






# Tamponi Filettati Passa con piano per controllo profondità Sigla TFP

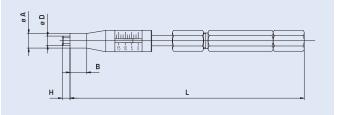
Per il controllo completo di madreviti con dimensione Passa e della profondità utile del filetto con arresto sul piano di battuta del calibro (definita nelle specifiche d'ordine).

Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.

Precisare in ordine se la quota A origina dal piano di intestatura o dal primo filetto completo.



## Profondimetri Filettati Semplici Sigla PFS


Per il controllo completo di madreviti con dimensione Passa e della profondità utile del filetto con lettura sul nonio.

Costruiti in acciaio per calibri temprato HRC 62÷64.

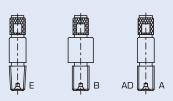
Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.

A richiesta sono fornibili profondimetri per qualsiasi tipo di filetto e/o con diametro medio diverso da tampone passa.

| øD        | øA   | В   | L   | H prof. max |
|-----------|------|-----|-----|-------------|
| M3 - M3,5 | 6,5  | 8   | 129 | 15          |
| M4 - M4,5 | 7,5  | 9,5 | 129 | 15          |
| M5 - M5,5 | 8,5  | 11  | 154 | 20          |
| M6        | 10,5 | 11  | 154 | 30          |
| M7        | 11,5 | 11  | 154 | 30          |
| M8        | 13   | 58  | 169 | 30          |
| M9        | 14   | 58  | 169 | 30          |
| M10       | 15   | 60  | 171 | 30          |
| M11       | 16,5 | 60  | 171 | 30          |
| M12       | 18   | 82  | 213 | 50          |
| M13       | 19   | 82  | 213 | 50          |
| M14       | 20   | 84  | 225 | 50          |
| M15       | 21   | 84  | 225 | 50          |
| M16       | 22   | 84  | 225 | 50          |



## Inserzioni per misure su 3D Sigla IN 3D


Accessori utilizzati per il controllo degli interassi delle forature con macchine di misura a coordinate. Costruiti in acciaio per calibri temprato HRC 62÷64.

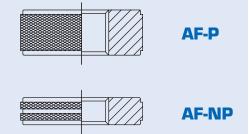
Tipo A - con filetto cilindrico Passa

Tipo AD - con filetto cilindrico a passo differenziato

Tipo B - con filetto cilindrico Passa e battuta

Tipo E - con filetto conico






## Anelli Filettati Passa Sigla AFS-P

## Anelli Filettati Non Passa Sigla AFS-NP

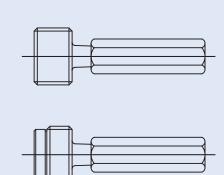
Per il controllo completo di viti con dimensione oppure Non Passa.

Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.



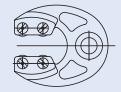
## **Riscontri Passa per Anelli Nuovi** Sigla **TRI**

Per il controllo i anelli nuovi Passa oppure Non Passa (il calibro deve entrare).


## **Riscontri Non Passa per Anelli Nuovi** Sigla **TRM**

Per il controllo i anelli nuovi Passa oppure Non Passa (il calibro non deve entrare).

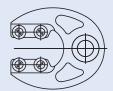



Per il controllo di anelli utilizzati (quando il calibro inizia ad entrare negli anelli, gli stessi vanno considerati usurati).

Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti con riferimento agli standard unificati.



## Forcella con Rulli Registrabile Normale Sigla FRRN


Per il controllo di viti con dimensione quota rulli Passa e Non Passa nello stesso lato di introduzione. Realizzate con fusioni stampate in acciaio. Rulli filettati in acciaio per calibri temprato HRC 62÷64. Dimensioni delle parti calibranti con riferimento agli standard unificati. Vengono fornite già registrate alla misura richiesta.





## Forcella con Rulli Registrabile Sottotesta Sigla FRRS

Per il controllo di viti con dimensione quota rulli Passa e Non Passa nello stesso lato di introduzione. Rulli posizionati verso l'esterno del calibro per permettere controlli sottotesta. Realizzate con fusioni stampate in acciaio. Rulli filettai in acciaio per calibri temprato HRC 62÷64. Dimensioni delle parti calibranti con riferimento agli standard unificati. Vengono fornite già registrate alla misura richiesta.







## Tamponi Filettati Conici con 2 piani di riferimento

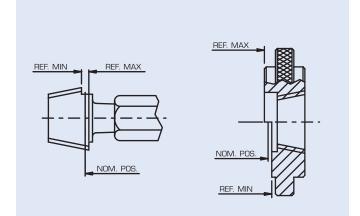
## Anelli Filettati Conici con 2 piani di riferimento

Adottati normalmente per filettature:

## **GAS UNI ISO 7/2-2000**

Tamponi sigla - **TFC 7R2** Anelli sigla - **AFC 7R2** 

### **DIN 2999**


Tamponi sigla - **TFC D2** Anelli sigla - **AFC D2** 

### **DIN 477**

Tamponi sigla - **TFC D4** Anelli sigla - **AFC D4** 

I piani si riferiscono alle posizioni di MIN e MAX tollerate. Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.

Dimensionamento del profilo secondo le normative della tabella.



## Tamponi Filettati Conici con 3 piani di riferimento

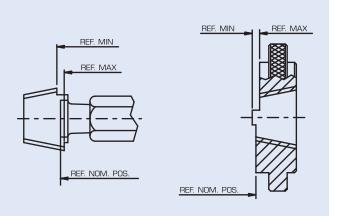
## Anelli Filettati Conici con 3 piani di riferimento

Adottati normalmente per filettature:

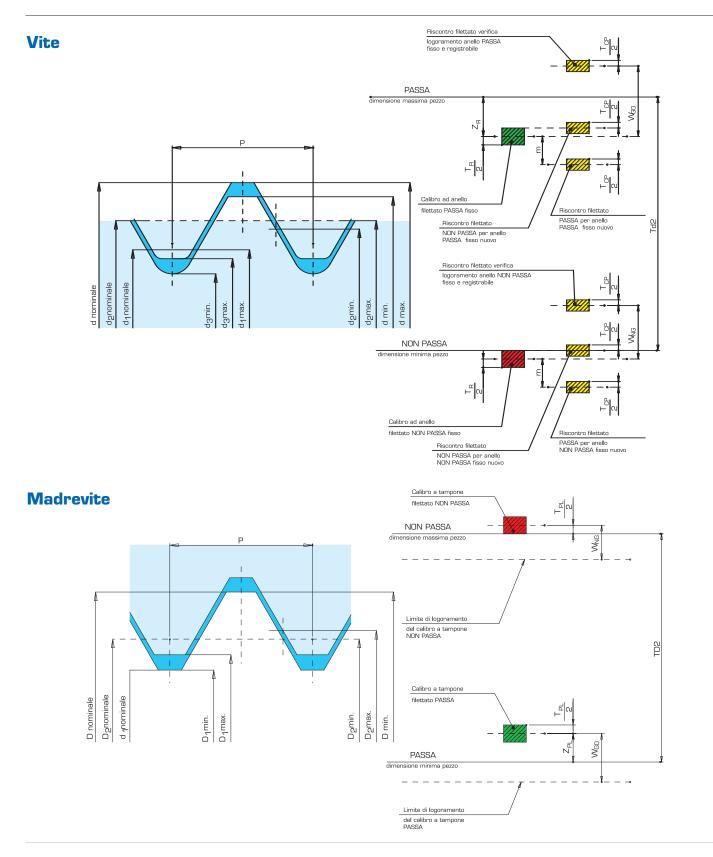
#### GAS

Tamponi sigla - **TFC G3** Anelli sigla - **AFC G3** 

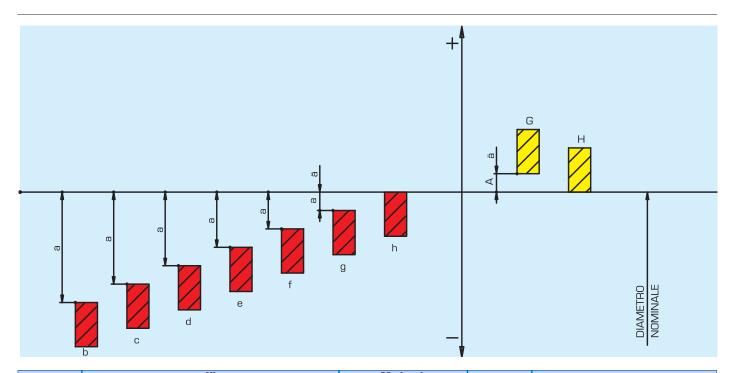
#### NPT


Tamponi sigla - **TFC N3** Anelli sigla - **AFC N3** 

## **NPTF**


Tamponi sigla - **TFC NF3** Anelli sigla - **AFC NF3** 

Un piano di riferimento al valore nominale e due piani riferiti rispettivamente alle posizioni di MIN e MAX tollerate. Costruiti in acciaio per calibri temprato HRC 62÷64. Forma e dimensioni delle parti calibranti con riferimento agli standard unificati.


Dimensionamento del profilo secondo le normative della tabella.





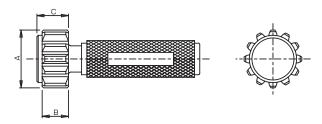






|       |   | 1         | lite        |      | Mad      | revite   |       |        |              |          |
|-------|---|-----------|-------------|------|----------|----------|-------|--------|--------------|----------|
| Passo |   | Valori in | micron di a |      | Valori i | n micron | Passo | Comple | nento Din 13 | Blatt 15 |
|       | h | g         | f           | e    | G        | H        |       | d      | C            | b        |
| 0,2   | 0 | -17       | -           | -    | +17      | 0        | 0,2   | -      | -            | -        |
| 0,25  | 0 | -18       | -           | -    | +18      | 0        | 0,25  | -      | -            | -        |
| 0,3   | 0 | -18       | -           | -    | +18      | 0        | 0,3   | -      | -            | -        |
| 0,35  | 0 | -19       | -34         | -    | +19      | 0        | 0,35  | -      | -            | -        |
| 0,4   | 0 | -19       | -34         | -    | +19      | 0        | 0,4   | (-72)  | (-120)       | -        |
| 0,45  | 0 | -20       | -35         | -    | +20      | 0        | 0,45  | (-73)  | (-122)       | -        |
| 0,5   | 0 | -20       | -36         | -50  | +20      | 0        | 0,5   | (-74)  | (-122)       | -        |
| 0,6   | 0 | -21       | -36         | -53  | +21      | 0        | 0,6   | (-76)  | (-124)       | -        |
| 0,7   | 0 | -22       | -38         | -56  | +22      | 0        | 0,7   | (-78)  | (-125)       | -        |
| 0,75  | 0 | -22       | -38         | -56  | +22      | 0        | 0,75  | (-79)  | (-126)       | -        |
| 0,8   | 0 | -24       | -38         | -60  | +24      | 0        | 0,8   | (-80)  | (-127)       | -        |
| 1     | 0 | -26       | -40         | -60  | +26      | 0        | 1     | -85    | -130         | -200     |
| 1,25  | 0 | -28       | -42         | -63  | +28      | 0        | 1,25  | -90    | -135         | -205     |
| 1,5   | 0 | -32       | -45         | -67  | +32      | 0        | 1,5   | -95    | -140         | -212     |
| 1,75  | 0 | -34       | -48         | -71  | +34      | 0        | 1,75  | -100   | -145         | -220     |
| 2     | 0 | -38       | -52         | -71  | +38      | 0        | 2     | -105   | -150         | -225     |
| 2,5   | 0 | -42       | -58         | -80  | +42      | 0        | 2,5   | -110   | -160         | -235     |
| 3     | 0 | -48       | -63         | -85  | +48      | 0        | 3     | -115   | -170         | -245     |
| 3,5   | 0 | -53       | -70         | -90  | +53      | 0        | 3,5   | -125   | -180         | -255     |
| 4     | 0 | -60       | -75         | -95  | +60      | 0        | 4     | -130   | -190         | -265     |
| 4,5   | 0 | -63       | -80         | -100 | +63      | 0        | 4,5   | -135   | -200         | -280     |
| 5     | 0 | -71       | -85         | -106 | +71      | 0        | 5     | -140   | -212         | -290     |
| 5,5   | 0 | -75       | -90         | -112 | +75      | 0        | 5,5   | -150   | -224         | -300     |
| 6     | 0 | -80       | -95         | -118 | +80      | 0        | 6     | -155   | -236         | -310     |

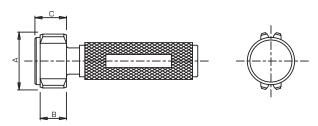





Utilizzati per il controllo di fori o alberi scanalati a fianchi diritti o ad evolvente.

A secondo delle esigenze di impiego sono prodotti con forme e caratteristiche dimensionali diverse.

A richiesta viene fornito il rapporto di taratura.

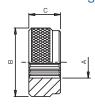

# Tamponi Scanalati ad Evolvente con profilo completo Passa Sigla TSE-P



Costruiti in acciaio per calibri temprato HRC 62 $\div$ 64. Il dimensionamento per gli scostamenti fa riferimento alle norme DIN 5480 – ANSI B 92.1.

| A mm da-a | В  | C  |
|-----------|----|----|
| Fino a 8  | 6  | 10 |
| 8 - 12    | 8  | 12 |
| 12 - 18   | 12 | 17 |
| 18 - 28   | 16 | 21 |
| 28 - 38   | 22 | 27 |
| 38 - 48   | 28 | 36 |
| 48 - 70   | 30 | 38 |
| 70 - 120  | 40 | 48 |
| 120 - 220 | 50 | 58 |

# Tamponi Scanalati ad Evolvente con profilo parziale Non Passa Sigla TSE-NP




Costruiti in acciaio per calibri temprato HRC 62÷64. Il dimensionamento per gli scostamenti fa riferimento alle norme DIN 5480 – ANSI B 92.1.

| A mm da-a | В  | C  |
|-----------|----|----|
| Fino a 8  | 4  | 8  |
| 8 - 12    | 6  | 10 |
| 12 - 18   | 8  | 13 |
| 18 - 28   | 10 | 15 |
| 28 - 38   | 12 | 18 |
| 38 - 48   | 14 | 22 |
| 48 - 70   | 15 | 23 |
| 70 - 120  | 20 | 28 |
| 120 - 220 | 25 | 33 |



# Anelli Scanalati ad Evolvente a profilo completo Passa Sigla ASE-P

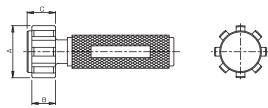




Costruiti in acciaio per calibri temprato HRC 62÷64. Il dimensionamento per gli scostamenti fa riferimento alle norme DIN 5480 - ANSI B 92.1.

| A mm da-a | В   | C  | A mm da-a | В   | C  |
|-----------|-----|----|-----------|-----|----|
| fino a 12 | 45  | 10 | 120 - 140 | 190 | 45 |
| 12 - 18   | 53  | 16 | 140 - 160 | 210 | 50 |
| 18 - 28   | 63  | 22 | 160 - 180 | 230 | 50 |
| 28 - 36   | 71  | 25 | 180 - 200 | 250 | 50 |
| 36 - 50   | 85  | 25 | 200 - 220 | 280 | 50 |
| 50 - 60   | 100 | 30 |           |     |    |
| 60 - 70   | 112 | 30 |           |     |    |
| 70 - 80   | 125 | 35 |           |     |    |
| 80 - 90   | 140 | 35 |           |     |    |
| 90 - 100  | 150 | 35 |           |     |    |
| 100 - 120 | 170 | 40 |           |     |    |

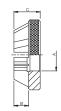
# Anelli Scanalati ad Evolvente a profilo parziale Non Passa Sigla ASE-NP






Costruiti in acciaio per calibri temprato HRC 62÷64. Il dimensionamento per gli scostamenti fa riferimento alle norme DIN 5480 - ANSI B 92.1.

| A mm da-a | В   | C  | A mm da-a | В   | C  |
|-----------|-----|----|-----------|-----|----|
| fino a 12 | 45  | 8  | 120 - 140 | 190 | 25 |
| 12 - 18   | 53  | 11 | 140 - 160 | 210 | 30 |
| 18 - 28   | 63  | 14 | 160 - 180 | 230 | 30 |
| 28 - 36   | 71  | 16 | 180 - 200 | 250 | 30 |
| 36 - 50   | 85  | 16 | 200 - 220 | 280 | 30 |
| 50 - 60   | 100 | 20 |           |     |    |
| 60 - 70   | 112 | 20 |           |     |    |
| 70 - 80   | 125 | 23 |           |     |    |
| 80 - 90   | 140 | 23 |           |     |    |
| 90 - 100  | 150 | 23 |           |     |    |
| 100 - 120 | 170 | 25 |           |     |    |


## Tamponi Scanalati Passa Sigla TSD



Costruiti in acciaio per calibri temprato HRC 62÷ 64. Il dimensionamento per gli scostamenti fa riferimento alle norme UNI 8953.

| A mm da-a | В    | C    |
|-----------|------|------|
| 14 - 20   | 20   | 24   |
| 20 - 25   | 25   | 29   |
| 25 - 32   | 31,5 | 35,5 |
| 32 - 36   | 40   | 45   |
| 36 - 46   | 45   | 50   |
| 46 - 50   | 50   | 55   |
| 50 - 68   | 50   | 56   |
| 68 - 88   | 50   | 58   |
| 88 - 112  | 50   | 60   |
| 112 - 125 | 56   | 66   |

## Anelli Scanalati Passa Sigla ASD

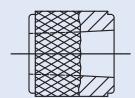




Costruiti in acciaio per calibri temprato HRC 62÷ 64. Il dimensionamento per gli scostamenti fa riferimento alle norme UNI 8953.

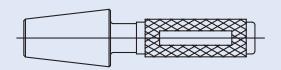
| A mm da-a | В    | C    |
|-----------|------|------|
| 14 - 20   | 10   | 20   |
| 20 - 25   | 10   | 20   |
| 25 - 32   | 12,5 | 25   |
| 32 - 36   | 14   | 28   |
| 36 - 46   | 18   | 35,5 |
| 46 - 50   | 22,4 | 45   |
| 50 - 68   | 25   | 50   |
| 68 - 88   | 28   | 56   |
| 88 - 112  | 31,5 | 63   |
| 112 - 125 | 35,5 | 71   |




Sono disponibili a magazzino i calibri per gli attacchi degli utensili (ISO e MORSE).

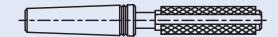
Su richiesta sono fornibili calibri per il controllo dei coni LUER a norme UNI EN 20594.




## **Bussole per controllo coni ISO** Sigla **BCN-IS**

Bussola campione secondo norma ISO 7388. Per coni ISO 30-40-45-50-55-60 Costruiti in acciaio per calibri cementato e temprato (HRC 62÷64).

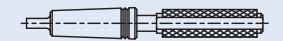



## **Tamponi per controllo coni ISO** Sigla **TCN-IS**

Tampone campione secondo norma ISO 297. Per coni ISO 30-40-45-50-55-60 Costruiti in acciaio per calibri cementato e temprato (HRC 62÷64).

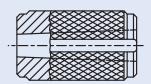


## **Tamponi per controllo Coni Morse** Sigla **TCN-CM**


Esecuzione conforme a tab. DIN 229 Per coni morse 0÷6 Costruiti in acciaio per calibri cementato e temprato (HRC 62÷64).



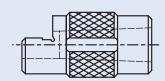



## Tamponi con tenone per controllo Coni Morse Sigla TCT-CM

Esecuzioni conforme a tab. DIN 230 Per coni morse 0÷6 Costruiti in acciaio per calibri cementato e temprato (HRC 62÷64).



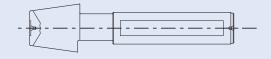
## **Bussole per controllo Coni Morse** Sigla **BCN-CM**


Esecuzione conforme a tab. DIN 229 Per coni morse 0÷6 Costruiti in acciaio per calibri cementato e temprato (HRC 62÷64).



## Bussole con Tenone per controllo Coni Morse Sigla BCT-CM

Esecuzione conforme a tab. DIN 230 Costruiti in acciaio per calibri cementato e temprato (HRC 62÷64).


Per coni morse 0÷6



# Calibri per controllo sedi pinze ER DIN 6499-C

Costruiti in acciaio per calibri cementato e temprato (HRC 62÷64).

Per tipi ER 11 - 16 - 20 - 25 - 32 - 40.



## Calibri per controllo coni LUER

Esecuzione conforme a tab. UNI EN 20594-ISO 594 Costruiti in acciaio per calibri cementato e temprato (HRC 62÷64).



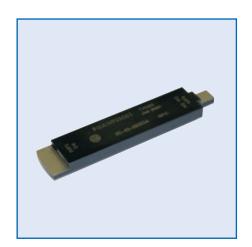


MG è in grado di fornire calibri speciali per 'attributi' con forme particolari secondo la necessità di controllo.

Calibri con controlli combinati (diametro e profondità).

Calibri per controllo smussi.

Controllo di cave.


Controllo di raggi.

Dime, sagome.

Calibri per controllo lavorazioni interne.

Maschere.

Maschere per controllo posizione fori.





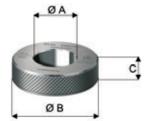


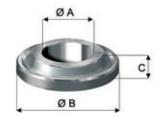






# Master Ingranaggi master


## Master - Anelli di azzeramento




MG è in grado di fornire master per l'azzeramento di strumenti per "comparazione" (con sensori elettronici o comparatori) monoquota e multiquota.

Trattasi generalmente di tamponi ed anelli cilindri e conici, tamponi ed anelli filettati, pezzi campione master. MG è in grado di fornire, inoltre, ingranaggi master con profilo ad evolvente, cilindrici ed elicoidali, impiegati per il controllo della "quota rulli" o per il controllo di rotolamento.

## Anelli di azzeramento Sigla ALM





per ø fino a 100 mm

per ø oltre 100 mm

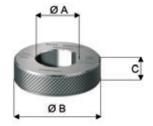
## Tipo C

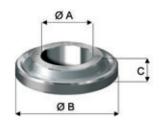
Costruiti secondo la norma DIN 2250-C

Per l'azzeramento di strumenti di misura a 2 punti di contatto diametrali grado IT6 o inferiore.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

A richiesta vengono forniti in acciaio inossidabile AISI 440 C (60÷62 HRC).


## **Caratteristiche:**


 Tolleranza di realizzazione per la dimensione nominale: JS3

Cilindricità: O,1 x IT4Rugosità: O,4 µm Rz

| ø A mm da - a | ø B | C          |
|---------------|-----|------------|
| 3 - 5         | 22  | 5          |
| 5 - 10        | 32  | 8          |
| 10 - 15       | 38  | 10         |
| 15 - 20       | 45  | 12         |
| 20 - 25       | 53  | 14         |
| 25 - 32       | 63  | 16         |
| 32 - 40       | 71  | 18         |
| 40 - 50       | 85  | 20         |
| 50 - 60       | 100 | בט         |
| 60 - 70       | 112 |            |
| 70 - 80       | 125 | 24         |
| 80 - 90       | 140 | 24         |
| 90 - 100      | 160 |            |
| 100 - 110     | 170 |            |
| 110 - 120     | 180 |            |
| 120 - 130     | 190 | 28         |
| 130 - 140     | 200 | دن         |
| 140 - 150     | 212 |            |
| 150 -160      | 224 |            |
| 160 - 170     | 236 |            |
| 170 - 180     | 250 |            |
| 180 - 190     | 265 | 32         |
| 190 - 200     | 280 | <i>ا</i> د |
| 200 - 212     | 300 |            |
| 212 - 224     | 315 |            |
| 224 - 236     | 335 |            |
| 236 -250      | 355 |            |
| 250 - 265     | 375 | 36         |
| 265 - 280     | 400 |            |
| 280 - 300     | 425 |            |







per ø fino a 100 mm

per ø oltre 100 mm

Costruiti secondo la norma NFE-11011

## Sigla ALA - A1

Vengono impiegati per l'azzeramento di strumenti di misura a 3 o più punti di contatto.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

## Caratteristiche:

- Tolleranza di realizzazione per la dimensione nominale: ± [(1,5+10x10-6 x A(mm)] µm.
- Cilindricità: ± [0,5+2,5x10-6 x A(mm)] μm.
- Ortogonalità: 0,06/100 mm.
- Rugosità: 0,04 Ra

| ø A mm da - a | ø B | C  |
|---------------|-----|----|
| 1 - 2,5       | 22  | 6  |
| 2,5 - 5       | 22  | 10 |
| 5 - 10        | 32  | 12 |
| 10 - 15       | 38  | 14 |
| 15 - 20       | 45  | 16 |
| 20 - 25       | 53  | 18 |
| 25 - 32       | 63  | 20 |
| 32 - 40       | 71  | 24 |
| 40 - 50       | 85  |    |
| 50 - 60       | 100 |    |
| 60 - 70       | 112 | 32 |
| 70 - 80       | 125 | عد |
| 80 - 90       | 140 |    |
| 90 - 100      | 160 |    |
| 100 - 110     | 170 |    |
| 110 - 120     | 180 |    |
| 120 - 130     | 190 | 28 |
| 130 - 140     | 200 | ۷۵ |
| 140 - 150     | 212 |    |
| 150 - 160     | 224 |    |

## Sigla ALA - B1

Per l'azzeramento di strumenti di misura a 2 punti di contatto diametrali grado IT6 o inferiore.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

### Caratteristiche:

- Tolleranza di realizzazione per la dimensione nominale: ± [1,5+10x10-6 x A(mm)] μm.
- Cilindricità: ± [2+10x10-6 x A(mm)] μm.
- Ortogonalità: 0,06/100 mm.
- Rugosità: 0,04 Ra

## Sigla ALA - B2

Per l'azzeramento di strumenti di misura a 2 punti di contatto diametrali grado IT7.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

#### Caratteristiche:

- Tolleranza di realizzazione per la dimensione nominale: ± [3+10x10-6 x A(mm)] μm.
- Cilindricità: ± [4+10x10-6 x A(mm)] μm.
- Ortogonalità: 0,09/100 mm.
- Rugosità: 0,08 Ra

## Tamponi e dischi di azzeramento





| mm da-a<br>øA | TLAC<br>C | TLAL<br>C |  |
|---------------|-----------|-----------|--|
| 2 - 3         | 6,5       | 15        |  |
| 3 - 4         | 8         | 16        |  |
| 4 - 5         | 0         | 10        |  |
| 5 - 6         | 10        | 20        |  |
| 6 - 10        | 10        | 20        |  |
| 10 - 14       | 12        | 24        |  |
| 14 - 18       | 16        | 26        |  |
| 18 - 24       | 10        | 20        |  |
| 24 - 30       | 20        | 30        |  |
| 30 - 40       | 20        | 30        |  |
| 40 - 63       | 25        | 35        |  |
| 63 - 100      | 35        | 45        |  |



| mm da-a øA | øB | C  |
|------------|----|----|
| 50-65      | 10 |    |
| 65-80      | 10 |    |
| 80-95      |    |    |
| 95-110     | 20 | 20 |
| 110-125    |    |    |
| 125-140    |    | 18 |
| 140 - 160  |    |    |
| 160 - 180  | 25 |    |
| 180-200    |    |    |
| 200-225    |    | 25 |
| 225-250    |    |    |
| 250-275    | 20 | 20 |
| 275-300    | 30 | 30 |

## **Tipo TLAC/TLAL - A1**

Per l'azzeramento di strumenti di misura a 3 o più punti di contatto.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

## Caratteristiche:

- Tolleranza di realizzazione per la dimensione nominale: ± [1+6x10-6 x A (mm)] μm.
- Cilindricità: ± [0,4+2x10-6 x A (mm)] μm.
- Ortogonalità: 0,06/100 mm.
- Rugosità: 0,04 Ra

## **Tipo TLAC/TLAL - B1**

Per l'azzeramento di strumenti di misura a 2 punti di contatto diametrali per tolleranze grado IT6 o inferiore.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

## Caratteristiche:

- Tolleranza di realizzazione per la dimensione nominale:  $\pm$  [1+6x10-6 x A (mm)]  $\mu$ m.
- Cilindricità: ± [1+2,5x10-6 x A (mm)] μm.
- Ortogonalità: 0,06/100 mm.
- Rugosità: 0,04 Ra

## **Tipo TLAC/TLAL - B2**

Per l'azzeramento di strumenti di misura a 2 punti di contatto diametrali per tolleranze grado IT7.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

### Caratteristiche:

- Tolleranza di realizzazione per la dimensione nominale: ± [2+6x10-6 x A(mm)] µm.
- Cilindricità: ± [2+5x10-6 x A (mm)] µm.
- Ortogonalità: 0,09/100 mm.
- Rugosità: 0,08 Ra

## Tipo DLA - A1

Per l'azzeramento di strumenti di misura a 3 o più punti di contatto.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

## Caratteristiche:

- Tolleranza di realizzazione per la dimensione nominale: ± [1+6x10-6 x A (mm)] μm.
- Cilindricità: ± [0,4+2x10-6 x A (mm)] μm.
- Ortogonalità: 0,06/100 mm.
- Rugosità: 0,04 Ra

## Tipo DLA - B1

Per l'azzeramento di strumenti di misura a 2 punti di contatto diametrali per tolleranze grado IT6 o inferiore.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

## **Caratteristiche:**

- Tolleranza di realizzazione per la dimensione nominale: ± [1+6x10-6 x A (mm)] μm.
- Cilindricità: ± [1+2,5x10-6 x A (mm)] μm.
- Ortogonalità: 0,06/100 mm.
- Rugosità: 0,04 Ra

## Tipo DLA - B2

Per l'azzeramento di strumenti di misura a 2 punti di contatto diametrali per tolleranze grado IT7.

Costruiti in acciaio per calibri cementato e temprato HRC 62÷64.

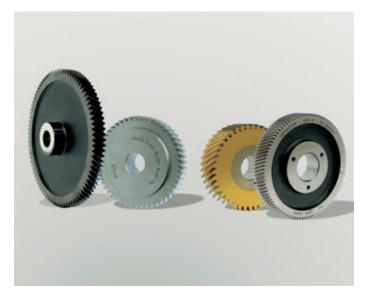
## **Caratteristiche:**

- Tolleranza di realizzazione per la dimensione nominale: ± [2+6x10-6 x A (mm)] μm.
- Cilindricità: ± [2+5x10-6 x A (mm)] μm.
- Ortogonalità: 0,09/100 mm.
- Rugosità: 0,08 Ra

## Master - Ingranaggi master



## Master


La loro forma generalmente riproduce il manufatto e servono per l'azzeramento di strumentazioni di controllo "per comparazione" (con sensori elettronici o comparatori).

Sono fornibili nelle seguenti tipologie di materiale:

- Acciaio standard per calibri ARNE (61÷63 HRC) C
   O,95 Mn 1,1 Cr O,6 W O,6 V O,1
- Acciaio super rapido (HSS) S 600 ( 64÷65 HRC) -X82 WMo 0605
- Acciaio inossidabile AISI 440 C (60÷62 HRC)

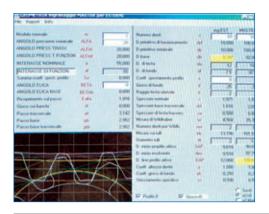
A richiesta sono eseguiti rivestimenti superficiali per ottenere una superiore durezza ed una maggior resistenza all'usura (TIN – DLC).

Sono forniti completi di Rapporti di Taratura



## Ingranaggi master

Ingranaggi master con profilo ad evolvente, cilindrici ed elicoidali, impiegati per il controllo della "quota rulli" o per il controllo di rotolamento.


Sono fornibili nelle seguenti tipologie di materiale:

- Acciaio standard per calibri ARNE (61÷63 HRC) C 0,95 Mn 1,1 Cr 0,6 W 0,6 V 0,1
- Acciaio super rapido (HSS) S 600 ( 64÷65 HRC) -X82 WMo 0605
- Acciaio inossidabile AISI 440 C (60÷62 HRC)

## Ingranaggi master



Vengono forniti su disegno del cliente o da progetto MG in funzione delle specifiche del prodotto.





Allo scopo di evitare possibili deformazioni del materiale (dopo anni di utilizzo), tutti i master costruiti da MG sono soggetti a trattamento artificiale di invecchiamento.

A richiesta sono eseguiti rivestimenti superficiali per ottenere una superiore durezza ed una maggior resistenza all'usura

## TiN

## Rivestimento al nitruro di titanio

## Caratteristiche tecniche

| Durezza                | 2500 HV         |
|------------------------|-----------------|
| Temperatura di coating | 420 °C          |
| T° max di lavoro       | 520 °C          |
| Coeff. di attrito      | 0,4             |
| Tecnologia             | arco            |
| Struttura rivestimento | monostrato      |
| Struttura reticolo     | monocristallino |



## DLC

## Rivestimento CVD a bassa temperatura (90°÷130°C)

### **Caratteristiche tecniche**

| Durezza                | 2000-4000 HV |
|------------------------|--------------|
| Temperatura di coating | 90-130 °C    |
| T° max di lavoro       | 400 °C       |
| Coeff. di attrito      | 0,05         |
| Tecnologia             | cvd          |
| Struttura rivestimento | monostrato   |
| Struttura reticolo     | amorfo       |
|                        |              |



Per l'eventuale progettazione di ingranaggi master si richiedono:

- Disegni completi del manufatto da controllare
- Diametro interno del master
- Classe di tolleranza richiesta (ex. DIN3)
- Numero dei denti del master
- Finitura superficiale

A richiesta viene fornito il rapporto di taratura.



Calibri per variabili e pneumatici







## M1 STAR - MBG

Il tampone meccanico M1 Star MBG (Mechanical Bore Gauge) rappresenta lo strumento meccanico ideale per la misura di precisione del diametro interno, ovalità e conicità di un foro.

Il tampone, nel suo campo di misura, è totalmente riattrezzabile sostituendo ogiva e tastatori. Un sistema di riferimento meccanico assicura una messa in diametro automatica.

Preciso, robusto ed affidabile, necessita di una minima manutenzione periodica preventiva che consiste unicamente nella pulizia della zona di trasduzione meccanica della misura.

L'ampia gamma di componenti modulari permette di configurare il tampone secondo tutte le esigenze di misura.

## Caratteristiche principali

- Campo di applicazione da 3 a 300 mm.
   Grazie ad una vasta gamma di accessori, possono essere raggiunte profondità di misura fino a 500 mm ed oltre, e permette di misurare anche fori con asse perpendicolare alla direzione di introduzione del tampone.
- Sistema di trasmissione a lunga durata: >10.000.000 di cicli di misura.
- Prestazioni metrologiche garantite in tutto il campo applicativo.
- Il principio di trasduzione meccanica consente l'interfacciamento con qualsiasi testa a matita o con qualsiasi comparatore meccanico o digitale.
- Necessita di un solo master per l'azzeramento grazie all'ampio campo di accuratezza del sistema di trasduzione meccanica.
- Compatibilità con gli accessori dei principali concorrenti.
- Prezzi competitivi.
- Rapida consegna.







## **Mechanical Bore Gauge**

La peculiarità dell' M1 Star MBG è il principio meccanico di trasduzione della misura che consente universalità applicativa grazie ad una vasta gamma di accessori.

Garantisce, inoltre, ottime prestazioni metrologiche, robustezza e facilità di manutenzione.

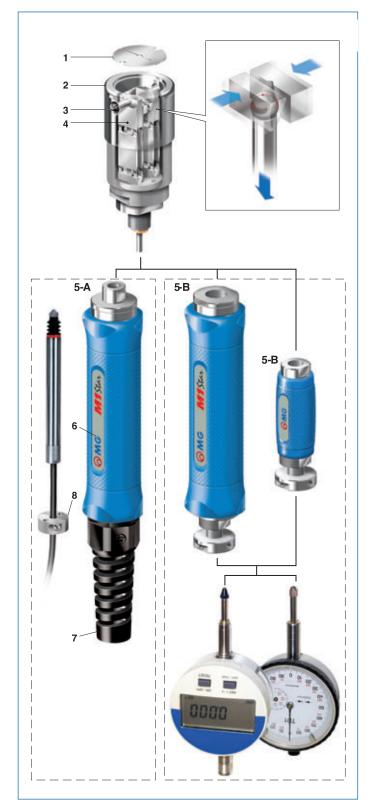
## Componenti principali

**1 CAPPELLOTTO:** è un disco di acciaio inossidabile, facilmente smontabile, che protegge gli elementi meccanici interni da danneggiamenti accidentali.

**20GIVA:** è l'elemento guidante e rende indipendente il risultato della misura dalla manualità dell'operatore.

**3 CONTATTI DI MISURA:** sono disponibili con diverse raggiature e in diversi tipi di materiale per poter misurare pezzi rettificati o torniti di qualsiasi tipo o materiale.

## 4 EQUIPAGGIO: è l'elemento di misura.


E' costituito, a seconda del campo diametrale, da 2 o 4 bracci fulcrati. La misura viene trasdotta allo strumento di visualizzazione attraverso lo scorrimento di uno spillo a testa sferica su una culla composta da un "V" ed un piano inclinato.

**5 MANICO:** Ha una caratteristica forma ergonomica e consente la manovrabilità del tampone. Può essere di tipo porta-sonda (per le applicazioni elettromeccaniche – fig. 5-A) oppure portacomparatore (per orologi meccanici o digitali – fig. 5-B). Quest'ultimo è disponibile in due versioni (piccola e grande).

**6 TARGHETTA:** può essere marcata con il codice dell'applicazione del cliente.

**7 SALVACAVO** (solo per manico di tipo 5A): impedisce al cavo della testa a matita in esso contenuta di piegarsi in modo eccessivo evitandone il danneggiamento.

**8 PRESSACAVO** (solo per manico di tipo 5A): impedisce danni causati da strappi o trazioni del cavo.





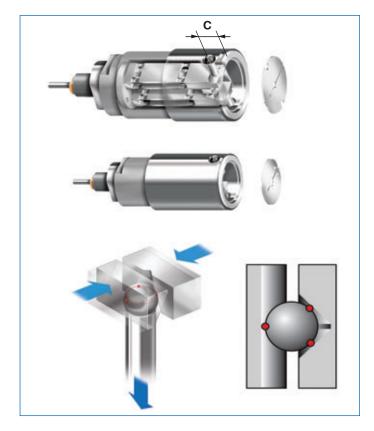


## La Capsula MBG

Costituita da ogiva, equipaggio e tastatori è l'elemento misurante del tampone. Può essere facilmente sostituita semplicemente svitandola dal manico.

OGIVA: di acciaio inossidabile X30 temprato e rettificato (durezza max 56 HRC). E' l'elemento guidante della capsula e inoltre facilita l'introduzione del tampone nel foro.

TASTATORI: quelli standard sono in widia e, in funzione del campo diametrale, hanno due possibili raggi, da scegliere a seconda della rugosità superficiale del pezzo da misurare:


R1: raggio standard consigliato per superfici con rugosità Ra  $\leq$  2  $\mu m$ 

R2: consigliato per fori di diametro fino a 26 mm con rugosità 2  $\mu$ m < Ra  $\leq$  4  $\mu$ m; consigliato anche per fori da 26 a 300 mm con rugosità Ra  $\leq$  8  $\mu$ m.

Sono disponibili anche tastatori in diamante (per alluminio tenero o in condizioni di forte usura), oppure rivestiti al cromo duro 1000 HV (per applicazioni su alluminio e sue leghe). I contatti di misura distano dal cielo dell'ogiva di una distanza C.

EQUIPAGGIO: è costituito, a seconda del campo diametrale, da 2 o 4 bracci fulcrati in acciaio inox. Uno spillo con testa sferica in widia, scorre su un "V" ed un piano inclinati, in acciaio temprato, trasducendo la misura allo strumento di visualizzazione.

Questo innovativo sistema a "culla" è stato progettato e testato per durare più di 10.000.000 di cicli di misura.



La capsula MBG è disponibile in quattro versioni, differenziate dal valore di C:

- 1. MBG-B per fori ciechi da 3 a 300 mm
- 2- MBG-BC per fori ciechi da 3 a 9,5 mm C=1,5 mm
- 3. MBG-SB per fori superciechi da 3 a 300 mm
- 4. MBG-T per fori passanti da 5,5 a 300 mm

## Caratteristiche tecniche

| descrizione                 | campo diametrale |              |              |              |              |                                                                                                     |
|-----------------------------|------------------|--------------|--------------|--------------|--------------|-----------------------------------------------------------------------------------------------------|
|                             | 3 - 4 mm         | 4 - 5,5 mm   | 5,5 - 7,5 mm | 7,5 - 9,5 mm | 9,5 - 26 mm  | 26 - 300 mm                                                                                         |
| CAMPO DI MISURA             | 0,100 mm         | 0,120 mm     | 0,120 mm     | 0,120 mm     | 0,120 mm     | 0,150 mm                                                                                            |
| MASSIMO CAMPO DI MISURA (1) | -                | -            | -            | 0,170 mm     | 0,220 mm     | 0,320 mm                                                                                            |
| FORZA DI MISURA (2)         | (0,4±0,1)N       | (0,4±0,1)N   | (0,3±0,1)N   | (0,4±0,1)N   | (0,6±0,2)N   | (0,8±0,2)N                                                                                          |
| RIPETIBILITA'               | ≤ 1µm            | ≤ 1µm        | ≤ 1µm        | ≤ 1µm        | ≤ 1µm        | ≤ 1µm                                                                                               |
| SENSIBILITA' (3)            | ± 1%             | ± 1%         | ± 1%         | ± 1%         | ± 1%         | ± 1%                                                                                                |
| DERIVA TERMICA DI ZERO      | ≤ 0,15 µm/°C     | ≤ 0,15 µm/°C | ≤ 0,15 µm/°C | ≤ 0,15 µm/°C | ≤ 0,15 µm/°C | campo da 26 a 80 mm ≤ 0,2 μm/°C campo da 80 a 150 mm ≤ 0,25 μm/°C campo da 150 a 300 mm ≤ 0,3 μm/°C |

<sup>[1]</sup> svitando i tastatori fissati all'equipaggio tramite vite con heli-coil., i campi di misura possono essere ampliati fino ai valori espressi in tabella.

<sup>(2)</sup> per tastatore, misurata all'estremo inferiore del campo di misura, senza tasta a matita o comparatore. Per diminuire la forza di misura si può togliere la molla oppure impiegare sonde o comparatori a bassa pressione.

<sup>(3)</sup> aumentando il campo di misura, la sensibilità può peggiorare.





## Dimensionamento dell'Ogiva

ø D nominale = ø min FORO – [0,0007 \* (ø min FORO + 12)] Tolleranza per ø D nominale

| ø da - a  | toll + | toll - |
|-----------|--------|--------|
| 3 - 26    | 0      | -0,015 |
| 26 - 50   | 0      | -0,02  |
| 50 - 104  | 0      | -0,03  |
| 104 - 150 | -0,01  | -0,05  |
| 150 - 180 | -0,01  | -0,08  |
| 180 - 300 | 0      | -0,1   |

### **Tastatori**

Per la capsula standard i tastatori sono in widia.

Per capsule speciali, per tipi e diametri indicati nelle tabelle delle pagine seguenti, è possibile montare anche tastatori in cromo duro o diamante.

In caso di ordine di capsule speciali è necessario verificare che il materiale ed il raggio del tastatore scelti siano tra quelli disponibili.

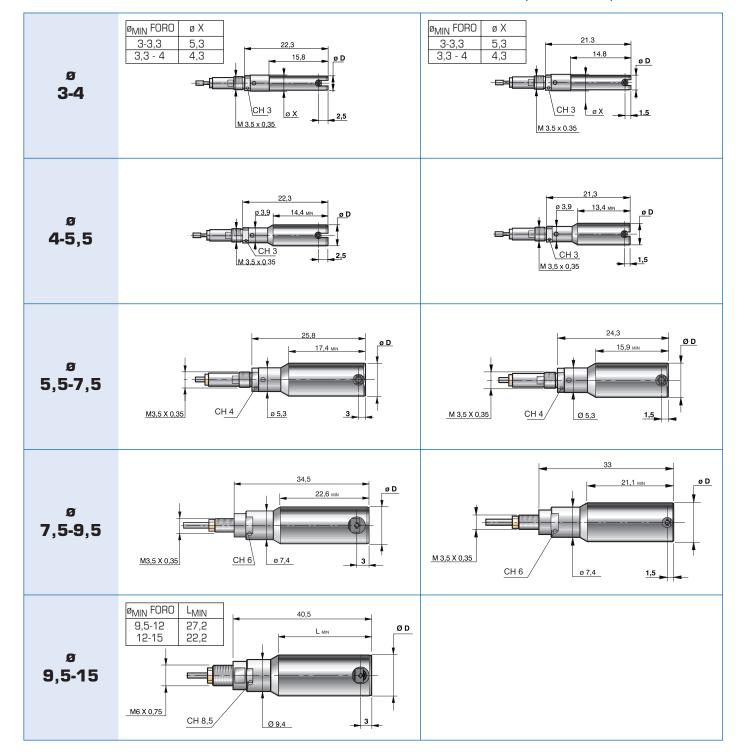
## **Come Ordinare**

Per ordinare i tamponi MBG occorre fornire le seguenti informazioni:

- Diametro del foro da misurare con tolleranza.
- Tipo capsula: B BC SB T a secondo che il foro sia cieco o passante.
- Materiale del tastatore: Widia, Cromo duro o Diamante (si prega di verificare che il materiale ed il raggio scelti per il tastatore siano tra quelli disponibili).
- Raggio tastatore (R1 oppure R2).
- Impugnatura: specificare il tipo (portasonda portacomparatore mini portacomparatore).
- Eventuali accessori (prolunghe adattatori di filetto raccordi angolari raccordi rotanti fermi di profondità).
- Anello di azzeramento: specificare il valore del diametro nominale (se al minimo, massimo o centro tolleranza rispetto alla tolleranza del foro da controllare).

In ogni caso è sempre utile fornire il disegno del manufatto da controllare.






## Capsula MBG-B

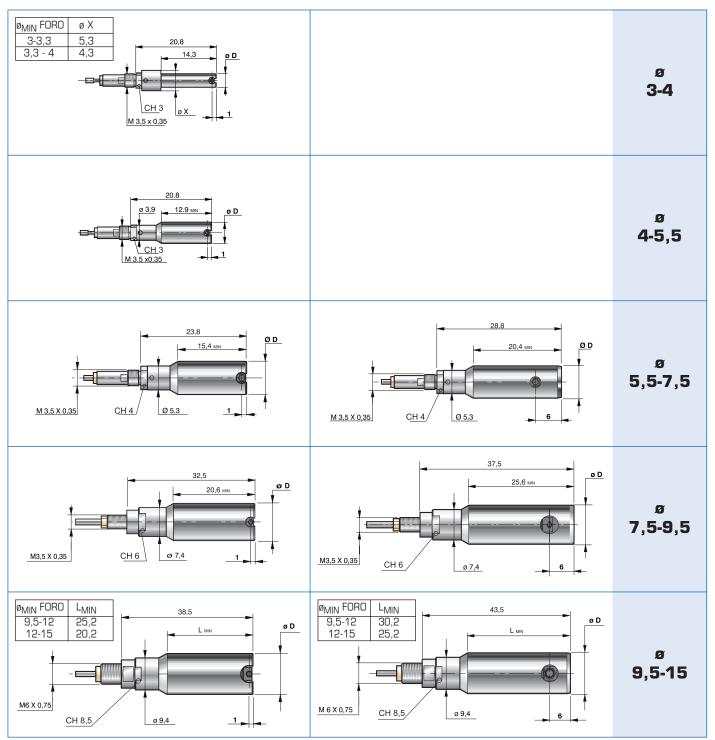
## Capsula MBG-BC

Fori Ciechi 3 - 300 mm

Fori Ciechi 3 - 9,5 mm C = 1,5








## Capsula MBG-SB

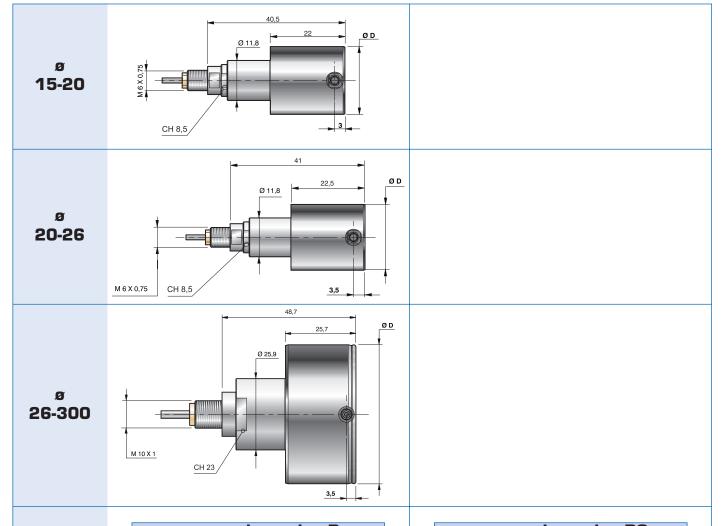
## Capsula MBG-T

Fori Super Ciechi 3 - 300 mm

Fori Passanti 5,5 - 300 mm








## Capsula MBG-B

## Capsula MBG-BC

Fori Ciechi 3 - 300 mm

Fori Ciechi 3 - 9,5 mm C = 1,5

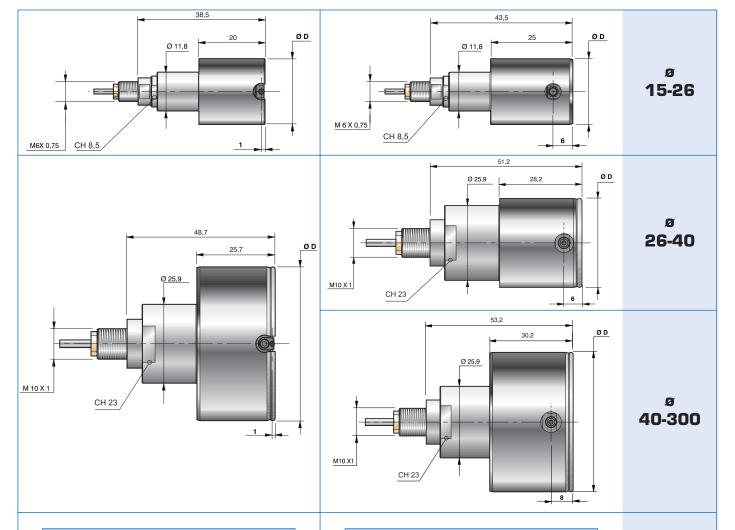


TASTATORI

| tastatori per tipo B |                       |         |       |      |  |
|----------------------|-----------------------|---------|-------|------|--|
|                      | widia o<br>cromo duro |         | diama | ante |  |
| ø da - a             | R1                    | R2      | R1    | R2   |  |
| 3-5,5                | 0,25                  | 0,75    | -     | -    |  |
| 5,5-7,5              | 0,5                   | 1       | -     | -    |  |
| 7,5-9,5              | 1,5                   | 1,5 2,5 |       | -    |  |
| 9,5-15               | 2                     | 2 3,5   |       | -    |  |
| 15-16                | 2                     | 5       | 0,75  | -    |  |
| 16-20                | 2                     | 5       | 2     | -    |  |
| 20-26                | 2                     | 5       | 2     | 5    |  |
| 26-32                | 4                     | 10      | 2     | 5    |  |
| 32-300               | 4                     | 10      | 4     | 10   |  |

| tasi     | tastatori per tipo BC |                 |      |      |  |  |
|----------|-----------------------|-----------------|------|------|--|--|
|          |                       | lia o<br>o duro | diam | ante |  |  |
| ø da - a | R1                    | R2              | R1   | R2   |  |  |
| 3-5,5    | 0,25                  | 0,75            | -    | -    |  |  |
| 5,5-7,5  | 0,5                   | 1               | -    | -    |  |  |
| 7,5-9,5  | 1,5                   | 2,5             | -    | -    |  |  |






## Capsula MBG-SB

## Capsula MBG-T

Fori Super Ciechi 3 - 300 mm

Fori Passanti 5,5 - 300 mm



| tastatori per tipo SB |      |                 |      |      |  |  |
|-----------------------|------|-----------------|------|------|--|--|
|                       |      | lia o<br>o duro | diam | ante |  |  |
| ø da - a              | R1   | R2              | R1   | R2   |  |  |
| 3-5,5                 | 0,25 | 0,75            | -    | -    |  |  |
| 5,5-7,5               | 0,5  | 1               | -    | -    |  |  |
| 7,5-9,5               | 1,5  | 2,5             | -    | -    |  |  |
| 9,5-15                | 2    | 3,5             | -    | -    |  |  |
| 15-26                 | 2    | 5               | -    | -    |  |  |
| 26-300                | 4    | 10              | -    | -    |  |  |

| tastatori per tipo T |     |        |      |      |  |
|----------------------|-----|--------|------|------|--|
|                      |     | lia o  | diam | ante |  |
|                      |     | o duro |      |      |  |
| ø da - a             | R1  | R2     | R1   | R2   |  |
| 5,5-7,5              | 0,5 | 1      | -    | -    |  |
| 7,5-9,5              | 1,5 | 2,5    | 0,75 | -    |  |
| 9,5-15               | 2   | 3,5    | 0,75 | -    |  |
| 15-16                | 2   | 5      | 0,75 | -    |  |
| 16-26                | 2   | 5      | 2    | 5    |  |
| 26-32                | 4   | 10     | 2    | 5    |  |
| 32-300               | 4   | 10     | 4    | 10   |  |

TASTATORI





## **Impugnature**

## Impugnatura Portasonda

Una forma ergonomica ed un sistema di azzeramento facile e sicuro garantiscono la sua funzionalità. Il salvacavo a molla e il pressacavo antistrappo-antirotazione salvaguardano il cavo della sonda. Può essere fornita senza testa a matita oppure completa di sonda con testa compatibile, con cavo di diametro 4,7mm, particolarmente resistente e adatto alle applicazioni manuali.

E' dotata di una targhetta metallica che può essere marcata con i codici significativi dell'applicazione anche da parte del cliente.

Sono fornibili con filetto da M6 oppure M10 (attacco per la capsula) e diametro 8 oppure 3/8" (bloccaggio comparatore).

## Impugnatura Portacomparatore

Una forma ergonomica ed un sistema di bloccaggio facile e sicuro garantiscono l'alloggiamento di qualsiasi comparatore. Alloggia una targhetta metallica che può essere marcata con i codici significativi dell'applicazione, anche da parte del cliente. Sono fornibili con filetto da M6 oppure M10 (attacco per la capsula) e diametro 8 oppure 3/8" (bloccaggio comparatore).

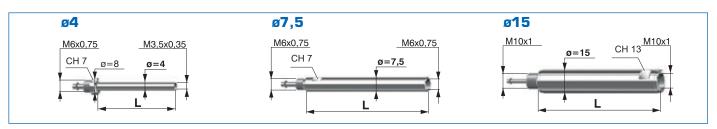
## Impugnatura Mini Portacomparatore

E' un portacomparatore adatto soprattutto ai tamponi per il controllo di piccoli diametri. Ha una forma ergonomica ed un sistema di bloccaggio facile e sicuro che consente di alloggiare qualsiasi comparatore.

Sono fornibili con filetto da M3,5, M6 oppure M10 (attacco per la capsula) e diametro 8 oppure 3/8" (bloccaggio comparatore).

Per l'ordine è necessario specificare il tipo, il filetto per la capsula ed il diametro di fissaggio per il comparatore o la testa a matita.

Nel caso di utilizzo di capsule con filetto da M3,5 con impugnature portasonda e portacomparatore è necessario interporre un adattatore di filetto.




## **Accessori Opzionali**

## **Prolunghe**

Le prolunghe in acciaio inox, inserite tra capsula e impugnatura, permettono di raggiungere la corretta posizione di prelievo della misura.

| ď   |    | lunghezza |    |    |    |    |     |     |     |     |
|-----|----|-----------|----|----|----|----|-----|-----|-----|-----|
| Ø   | 20 | 30        | 40 | 50 | 65 | 80 | 100 | 125 | 250 | 500 |
| 4   | •  | •         | •  | •  | •  | •  | •   | •   |     |     |
| 7,5 | •  | •         | •  | •  | •  | •  | •   | •   | •   |     |
| 15  |    |           |    | •  | •  | •  | •   | •   | •   | •   |



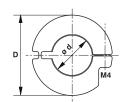
Per l'ordine è necessario specificare il diametro e la lunghezza.

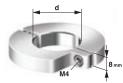




## Adattatori di filetto

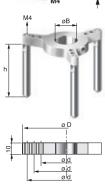
Gli adattatori, in acciaio inox, consentono l'intercambiabilità degli accessori.


| filetto A | filetto B | codice     |
|-----------|-----------|------------|
| M3,5x0,35 | M6x0,75   | 1TA0350600 |
| M3,5x0,35 | M10x1     | 1TA0351000 |
| M6x0,75   | M10x1     | 1TA0601000 |




## Fermi di profondità

I fermi di profondità servono per definire con precisione la profondità della sezione di misura. Sono costruiti in acciaio inox e si possono fissare, in posizione longitudinale, sull'ogiva oppure sulle prolunghe.


|            | CON FISSAGGIO SU OGIVA |            |        |            |        |  |  |  |
|------------|------------------------|------------|--------|------------|--------|--|--|--|
| ø min foro | ø D mm                 | ø min foro | ø D mm | ø min foro | ø D mm |  |  |  |
| 8-11       | 33                     | 30-35      | 61     | 60-70      | 96     |  |  |  |
| 11-15      | 37                     | 35-40      | 66     | 70-80      | 106    |  |  |  |
| 15-20      | 42                     | 40-45      | 71     | 80-90      | 116    |  |  |  |
| 20-25      | 51                     | 45-50      | 76     | 90-100     | 126    |  |  |  |
| 25-30      | 56                     | 50-60      | 86     |            |        |  |  |  |





In caso di ordine specificare il diametro dell'ogiva.

|        | CON FISSAGGIO SU PROLUNGA |      |           |          |            |     |            |  |
|--------|---------------------------|------|-----------|----------|------------|-----|------------|--|
| ø B mm | ø D mm                    | h mm |           | ø d mm   |            |     | codice     |  |
| 4      | 32                        | 32,8 |           | 26       |            |     | 2TDEMO40AO |  |
| 7,5    | 42                        | 34,8 |           | 36       |            |     | 2TDEM075A0 |  |
|        | 45                        |      |           | 38       |            |     | 2TDEM150A0 |  |
|        | 75                        |      | 44        | 44 56 68 |            |     |            |  |
| 15     | 110                       | 45   | 79 91 103 |          | 2TDEM150CO |     |            |  |
|        | 160                       |      | 117       | 129      | 141        | 153 | 2TDEM150D0 |  |
|        | 220                       |      | 177       | 189      | 201        | 213 | 2TDEM150E0 |  |



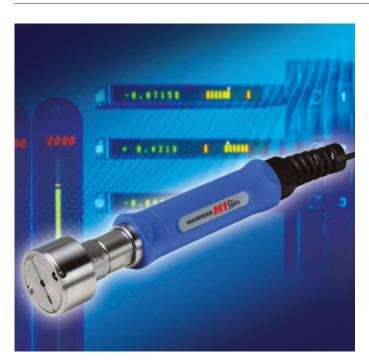
## Raccordi angolari

I raccordi angolari sono necessari quando lo spazio di manovra è ridotto ed il foro è in posizione tale da richiedere un ribaltamento di 90° rispetto all'asse di misura.

| filetto A | filetto B | P mm | codice     |
|-----------|-----------|------|------------|
|           | M3,5x0,35 | 3,7  | 2TAS630000 |
| M6x0,75   | M6x0,75   | 4,2  | 2TAS660000 |
|           | M10x1     | 13,1 | 2TAS6A0000 |
|           | M3,5x0,35 | 3,7  | 2TASA30000 |
| M10x1     | M6x0,75   | 4,2  | 2TASA60000 |
|           | M10x1     | 13,1 | 2TASAA0000 |



## Raccordi rotanti


I raccordi rotanti consentono di avere il quadrante del comparatore sempre in posizione frontale durante le misure dinamiche.

| codice     |
|------------|
| 2TR060S000 |
| 2TR100S000 |
|            |









## M1 STAR - EBG

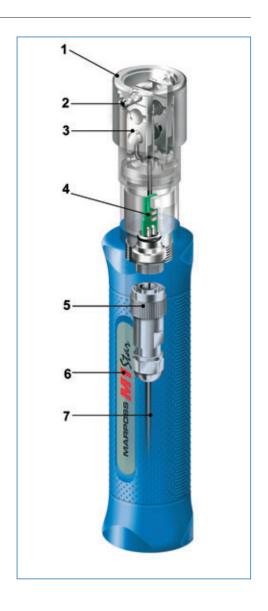
M1 Star è una linea innovativa di misuratori manuali per il controllo diametrale di fori.

M1 Star EBG (Electronic Bore Gauge), è il misuratore elettronico manuale ideale per il controllo di diametri, ovalità e conicità di fori, ove siano richieste prestazioni di elevata precisione.

Per le sue caratteristiche di robustezza e per l'elevato grado di resistenza agli agenti esterni, M1 Star EBG è particolarmente adatto all'impiego anche negli ambienti di produzione più avversi.

## Caratteristiche principali

- Campo di applicazione da 3 a 300mm, con profondità della sezione di misura fino a 500mm.
- Sistema di prelievo della misura completamente privo di attrito.
- Ripetibilità entro 0.5 mm, costante su tutto il campo applicativo, documentata da un certificato di collaudo individuale del prodotto.
- Robustezza ed affidabilità (tenuta stagna IP67, resistenza agli urti ed alle cadute accidentali, cavo anti-strappo sostituibile),
- Il trasduttore, disponibile sia in versione LVDT che HBT con elettronica Marposs.
   Un apposito circuito di compensazione integrato nel cavo-prolunga, permette di realizzare la compatibilità con altre elettroniche di larga diffusione.
- La capsula di misura EBG può essere rapidamente sostituita, in quanto dotata di un connettore che la rende indipendente dai suoi componenti di natura applicativa.
- Rapida consegna.








## Componenti del prodotto

- **1 OGIVA:** è l'elemento di guida che rende indipendente il risultato della misura dalla manualità dell'operatore.
- **2 CONTATTI DI MISURA:** sono disponibili con diverse raggiature e in diversi materiali (widia, diamante e carbonio amorfo) in base alla tipologia di pezzo da misurare.
- **3 EQUIPAGGIO:** è l'elemento di misura ed è costituito, a seconda del range diametrale, da 2 o da 4 bracci fulcrati. Alloggia un trasduttore elettronico differenziale LVDT o HBT di altissima accuratezza, affidabilità e durabilità (tenuta stagna IP67 completamente privo di attrito), che traduce la misura eseguita meccanicamente in un segnale elettrico ad essa proporzionale.
- **4 ELETTRONICA DI ELABORAZIONE DEL SEGNALE:** L'insieme delle elettroniche "on board" di M1 EBG. Provvede alla normalizzazione del segnale e permette la regolazione fine della sensibilità.
- **5 CONNETTORE:** consente di rendere indipendenti la caspula e la prolunga-cavo, rendendo più semplici i riattrezzamenti e più economiche le riparazioni.
- **6 MANICO:** è il supporto fisico della capsula di misura, consente la manovrabilità del tampone nel rispetto dell'anatomia della mano.
- **7 PROLUNGA CAVO:** conforme alle normative EMC (compatibilità elettromagnetica), ha caratteristiche studiate appositamente per le applicazioni di tipo manuale. La sua sostituibilità, contribuisce all'abbattimento dei costi di gestione del prodotto.



## Caratteristiche tecniche

| Descrizione     | Campo diametrale |             |              |             |  |  |  |
|-----------------|------------------|-------------|--------------|-------------|--|--|--|
|                 | 3 - 8 mm         | 8 - 10,5 mm | 10,5 - 26 mm | 26 - 300 mm |  |  |  |
| Campo di misura | 0,07             | 0,1         | 0,12         | 0,15        |  |  |  |
| Ripetibilità    | ≤ 0,5 µm         | ≤ 0,5 µm    | ≤ 0,5 µm     | ≤ 0,5 µm    |  |  |  |

#### **Tastatori**

Per la capsula standard i tastatori sono in widia.

Per le capsule speciali, per i tipi e diametri indicati nelle tabelle delle pagine seguenti, è possibile montare anche tastatori in carbonio amorfo o in diamante.

In caso di ordine di capsule speciali è necessario verificare che il materiale ed il raggio del tastatore siano tra quelli disponibili.



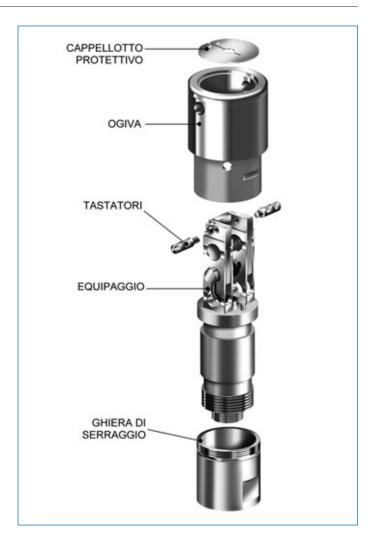


## La Capsula EBG

La capsula EBG, costituita da ogiva, equipaggio e tastatori, è la parte principale del misuratore. Può essere facilmente intercambiata semplicemente svitandola dal manico e disconnettendo il cavo.

OGIVA: di acciaio inossidabile X30 temprato e rettificato, a raggiungere una durezza dell'ordine di 52–56 HRC; è l'elemento guidante della capsula. La grandissima accuratezza con cui Marposs S.p.A realizza il corpo ogiva consente di minimizzare gli errori di misura causati dal gioco fra ogiva e pezzo.

TASTATORI: sono i veri e propri punti di misura del foro. Interamente in Widia nella loro configurazione standard, sono disponibili anche in diamante o rivestiti al carbonio amorfo, per soddisfare tutte le esigenze di misura su qualsiasi materiale. Sono disposti nella capsula ad una determinata distanza C dal cielo dell'ogiva, in dipendenza della tipologia di foro da misurare (B/T/SB). Prodotti con due diverse saggiature a seconda della rugosità superficiale del pezzo da misurare:


R1: raggiatura standard, consigliata per superfici con rugosità Ra ≤ 2 μm

R2: consigliato per fori di diametro fino a 26mm con rugosità Ra ≤ 4 μm; consigliato anche per fori da 26 a 300mm con rugosità Ra ≤ 8 μm.

EQUIPAGGIO: è l'elemento di misura ed è costituito, a seconda del range diametrale, da 2 o da 4 bracci fulcrati. Alloggia un trasduttore elettronico differenziale LVDT o HBT di altissima precisione, affidabilità e durabilità (tenuta stagna IP67 - completamente privo di attrito), che trasduce la misura eseguita meccanicamente in un segnale elettrico ad essa proporzionale.

## Dimensionamento della capsula

ø D nominale = ø min FORO – [0,0007 \* (ø min FORO + 12)] Tolleranza per ø D nominale



La capsula EBG è disponibile nelle seguenti versioni:

**EBG - B** per fori ciechi da 3 a 300 mm.

**EBG - T** per fori passanti da 3 a 300 mm.

**EBG - SB** per fori super-ciechi da 10,5 a 300 mm.

**EBG - DEPP** per fori profondi da 10,5 a 26 mm.

| ø da - a  | toll + | toll - |
|-----------|--------|--------|
| 3 - 26    | 0      | -0,015 |
| 26 - 50   | 0      | -0,025 |
| 50 - 104  | 0      | -0,03  |
| 104 - 150 | -0,01  | -0,05  |
| 150 - 300 | -0,01  | -0,06  |





## Manico completo

La funzionalità dell'impugnatura è garantita dalla sua forma ergonomica.

Un salvacavo a molla preserva il cavo da eventuali torsioni. E' dotata di una targhetta metallica che può essere marcata con i codici significativi dell'applicazione, anche dal cliente.

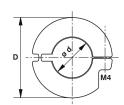


Le prolunghe in acciaio inox, inserite tra capsula ed impugnatura permettono di raggiungere la profondità di misura desiderata.

I codici ordinabili sono i seguenti.

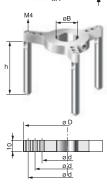
| Range diametrale | L mm | Codice     | Lmm | Codice     |
|------------------|------|------------|-----|------------|
|                  | 20   | 1TX0S00020 | 80  | 1TX0S00080 |
|                  | 30   | 1TX0S00030 | 100 | 1TX0S00100 |
| 26 - 300         | 40   | 1TX0S00040 | 125 | 1TX0S00125 |
|                  | 50   | 1TX0S00050 | 250 | 1TX0S00250 |
|                  | 65   | 1TX0S00065 | 500 | 1TX0S00500 |






## Fermi di profondità

I fermi di profondità servono per definire con precisione la profondità della sezione di misura. Sono costruiti in acciaio inox e si possono fissare, in posizione longitudinale, sull'ogiva oppure sulle prolunghe.


In caso di ordine specificare il diame-

|            | CON FISSAGGIO SO OGIVA |            |        |            |        |  |  |  |
|------------|------------------------|------------|--------|------------|--------|--|--|--|
| ø min foro | ø D mm                 | ø min foro | ø D mm | ø min foro | ø D mm |  |  |  |
| 8-11       | 33                     | 30-35      | 61     | 60-70      | 96     |  |  |  |
| 11-15      | 37                     | 35-40      | 66     | 70-80      | 106    |  |  |  |
| 15-20      | 42                     | 40-45      | 71     | 80-90      | 116    |  |  |  |
| 20-25      | 51                     | 45-50      | 76     | 90-100     | 126    |  |  |  |
| 25-30      | 56                     | 50-60      | 86     |            |        |  |  |  |
|            |                        |            |        |            |        |  |  |  |

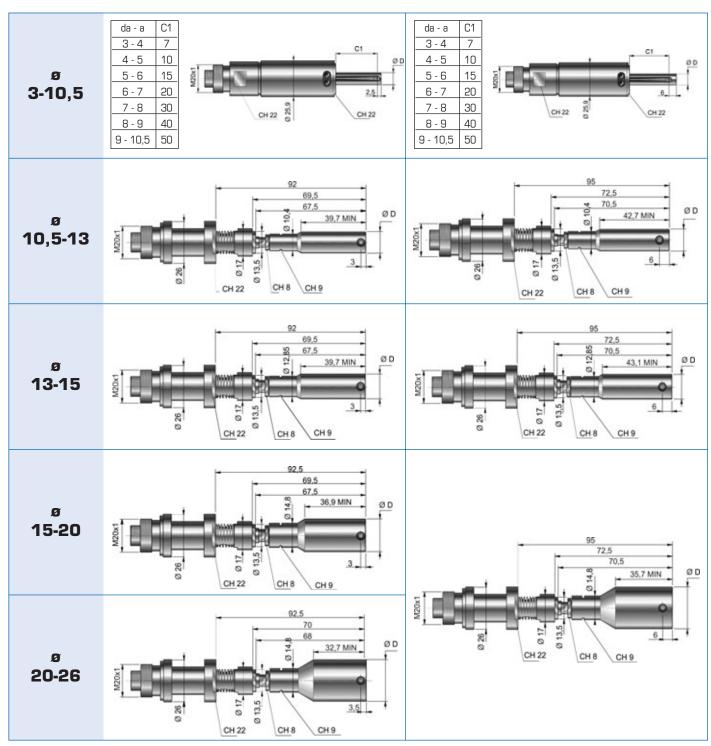




|        | CON FISSAGGIO SU PROLUNGA |      |     |     |     |     |            |  |  |  |
|--------|---------------------------|------|-----|-----|-----|-----|------------|--|--|--|
| ø B mm | ø D mm                    | h mm |     | ødı | mm  |     | codice     |  |  |  |
| 7      | 42                        | 63,8 |     | 26  | 3   |     | 2TDEE070A0 |  |  |  |
| 9      | 42                        | 63,8 |     | 36  | 3   |     | 2TDEE090A0 |  |  |  |
|        | 45                        |      |     | 38  |     |     |            |  |  |  |
|        | 75                        |      | 44  | 56  | 3   | 68  | 2TDEE220B0 |  |  |  |
| 22     | 110                       | 63,3 | 79  | 91  |     | 103 | 2TDEE220CO |  |  |  |
|        | 160                       |      | 117 | 129 | 141 | 153 | 2TDEE220D0 |  |  |  |
|        | 220                       |      | 177 | 189 | 201 | 213 | 2TDEE220E0 |  |  |  |








## Capsula EBG-B

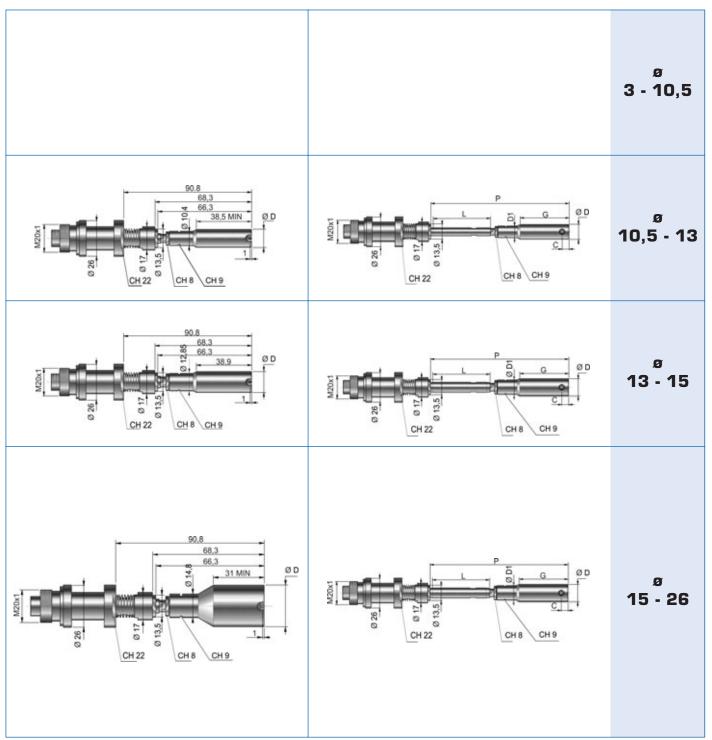
## Capsula EBG-T

Fori Ciechi 3 - 300 mm

Fori Passanti 3 - 300 mm








## Capsula EBG-SB

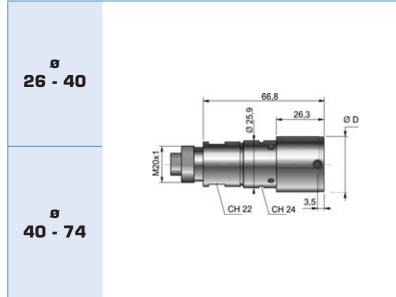
## Capsula EBG-DEPP

Fori Super Ciechi 10,5 - 300 mm

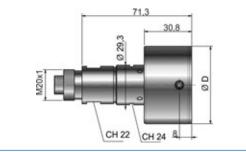
Fori Profondi 10,5 - 26 mm



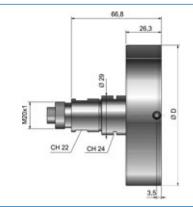


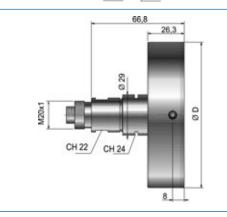



## Capsula EBG-B


Fori Ciechi 3 - 300 mm

## Capsula EBG-T


Fori Passanti 3 - 300









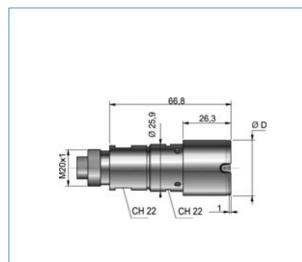


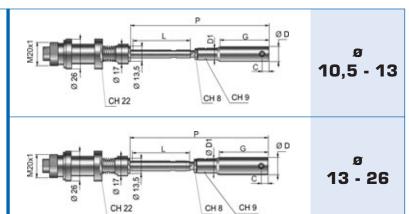


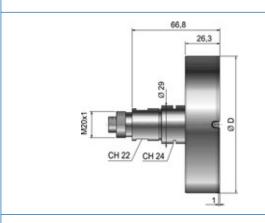

| Т |
|---|
| A |
| S |
| T |
| A |
| T |
| 0 |
| R |
|   |

| tastatori per tipo B |      |     |          |          |      |      |  |
|----------------------|------|-----|----------|----------|------|------|--|
|                      | widi | ia  | carbonic | o amorfo | diam | ante |  |
| ø da - a             | R1   | R2  | R1       | R2       | R1   | R2   |  |
| 3 - 4                | 0,5  | -   | 0,5      | 1        | -    | -    |  |
| 4 - 7                | 0,5  | 1   | 0,5      | 1        | -    | -    |  |
| 7 - 8                | 0,5  | 1   | 0,5      | 1        | 0,4  | -    |  |
| 8 - 10,5             | 1,5  | 2,5 | 1,5      | 2,5      | 0,4  | -    |  |
| 10,5 - 13            | 2    | 3,5 | 2        | 3,5      | 0,75 | -    |  |
| 13 - 15              | 2    | 3,5 | 2        | 3,5      | 2    | -    |  |
| 15 - 20              | 2    | 5   | 2        | 5        | 2    | -    |  |
| 20 - 26              | 2    | 5   | 2        | 5        | 2    | 5    |  |
| 26 - 32              | 4    | 10  | 4        | 10       | 2    | -    |  |
| 32 - 74              | 4    | 10  | 4        | 10       | 4    | 10   |  |
| 74 - 300             | 4    | 10  | 4        | 10       | 4    | 10   |  |
|                      |      |     |          |          |      |      |  |

| tastatori per tipo <b>T</b> |      |     |          |        |          |    |  |  |
|-----------------------------|------|-----|----------|--------|----------|----|--|--|
|                             | widi | a   | carbonio | amorfo | diamante |    |  |  |
| ø da - a                    | R1   | R2  | R1       | R2     | R1       | R2 |  |  |
| 3 - 4                       | 0,5  | -   | 0,5      | 1      | -        | -  |  |  |
| 4 - 7                       | 0,5  | 1   | 0,5      | 1      | -        | -  |  |  |
| 7 - 8                       | 0,5  | 1   | 0,5      | 1      | 0,4      | -  |  |  |
| 8 - 10,5                    | 1,5  | 2,5 | 1,5      | 2,5    | 0,4      | -  |  |  |
| 10,5 - 13                   | 2    | 3,5 | 2        | 3,5    | 0,75     | -  |  |  |
| 13 - 15                     | 2    | 3,5 | 2        | 3,5    | 2        | -  |  |  |
| 15 - 16                     | 2    | 5   | 2        | 5      | 2        | -  |  |  |
| 16 - 26                     | 2    | 5   | 2        | 5      | 2        | 5  |  |  |
| 26 - 32                     | 4    | 10  | 4        | 10     | 2        | -  |  |  |
| 32 - 74                     | 4    | 10  | 4        | 10     | 4        | 10 |  |  |
| 74 - 300                    | 4    | 10  | 4        | 10     | 4        | 10 |  |  |





## Capsula EBG-SB


## Fori Super Ciechi 10,5 - 300 mm

## Capsula EBG-DEPP

Fori Profondi 10,5 - 26 mm







|                                                 |     | C |    | G min |      |    | D1    |  |
|-------------------------------------------------|-----|---|----|-------|------|----|-------|--|
| campo                                           | В   | T | SB | В     | T    | SB | וע    |  |
| 10,5 - 13                                       | 3   | 6 | 1  | 32,7  | 35,7 | 31 | 10,4  |  |
| 13 - 15                                         | 3   | 6 | 1  | 32,7  | 35,7 | 31 | 12,85 |  |
| 15 - 20                                         | 3   | 6 | 1  | 32,7  | 35,7 | 31 | 14,8  |  |
| 20 - 26                                         | 3,5 | 6 | 1  | 32,7  | 35,7 | 31 | 14,8  |  |
| prol. P per campo 10,5 - 20 P per campo 20 - 26 |     |   |    |       |      |    |       |  |
|                                                 | n   |   | OF |       | n    | 7  | OD    |  |

| prol. | P per | campo 10 | ,5 - 20 | P pe | r campo 20 | - 26  |
|-------|-------|----------|---------|------|------------|-------|
| L     | В     | Ī        | SB      | В    | T          | SB    |
| 20    | 87,5  | 90,5     | 87,3    | 88   | 90,5       | 87,3  |
| 30    | 97,5  | 100,5    | 97,3    | 98   | 100,5      | 97,3  |
| 40    | 107,5 | 110,5    | 107,3   | 108  | 110,5      | 107,3 |
| 50    | 117,5 | 120,5    | 117,3   | 118  | 120,5      | 117,3 |
| 65    | 132,5 | 135,5    | 132,5   | 133  | 135,5      | 132,3 |
| 80    | 147,5 | 150,5    | 147,3   | 148  | 150,5      | 147,3 |
| 100   | 167,5 | 170,5    | 167,3   | 168  | 170,5      | 167,3 |
| 125   | 192,5 | 195,5    | 192,3   | 193  | 195,5      | 192,3 |
| 250   | 317,5 | 320,5    | 317,3   | 318  | 320,5      | 317,3 |
| 500   | 567,5 | 570,5    | 567,3   | 568  | 570,5      | 567,3 |

| tastatori per tipo SB |                                |     |    |     |    |    |
|-----------------------|--------------------------------|-----|----|-----|----|----|
|                       | widia carbonio amorfo diamante |     |    |     |    |    |
| ø da - a              | R1                             | R2  | R1 | R2  | R1 | R2 |
| 10,5 - 13             | 2                              | 3,5 | 2  | 3,5 | -  | -  |
| 13 - 15               | 2                              | 3,5 | 2  | 3,5 | -  | -  |
| 15 - 26               | 2                              | 5   | 2  | 5   | -  | -  |
| 26 - 74               | 4                              | 10  | 4  | 10  | -  | -  |
| 74 - 300              | 4                              | 10  | 4  | 10  | -  | -  |
|                       |                                |     |    |     |    |    |
|                       |                                |     |    |     |    |    |
|                       |                                |     |    |     |    |    |
|                       |                                |     |    |     |    |    |
|                       |                                |     |    |     |    |    |
|                       |                                |     |    |     |    |    |

| tastatori per tipo DEPP |      |     |          |          |          |    |
|-------------------------|------|-----|----------|----------|----------|----|
|                         | widi | ia  | carbonio | o amorfo | diamante |    |
| ø da - a                | R1   | R2  | R1       | R2       | R1       | R2 |
| 10,5 - 13               | 2    | 3,5 | 2        | 3,5      | 0,75     | -  |
| 13 - 15                 | 2    | 3,5 | 2        | 3,5      | 2        | -  |
| 15 - 20                 | 2    | 5   | 2        | 5        | 2        | 5  |
| 20 - 26                 | 2    | 5   | 2        | 5        | 2        | 5  |
|                         |      |     |          |          |          |    |
|                         |      |     |          |          |          |    |

TASTATORI







## Tamponi M1 WAVE

M1 WAVE, un prodotto innovativo dedicato alla misurazione dei fori, con tecnologia di trasmissione Wireless Bluetooth®.

La soluzione M1 WAVE si pone al vertice qualitativo della gamma di tamponi manuali di misura sviluppati con il nome M1 STAR, il cui fine è quello di offrire all'utente nuove ed evolute opportunità operative.

La capsula di misura standard EBG, comune a M1 Star e dotata di trasduttore integrato, può ora colloquiare con l'elettronica di misura tramite la tecnologia di trasmissione Bluetooth.

Il nuovo manico standard dell'M1 WAVE integra il trasmettitore Bluetooth e le batterie di alimentazione. Tramite una semplice pressione del pulsante posto sul manico il tampone può colloquiare in tempo reale con l'elettronica di visualizzazione e mostrare il valore della misura rilevata sullo strumento.

Tramite lo stesso pulsante è possibile acquisire i dati di misura, eseguire elaborazioni statistiche, comandare cicli complessi e condotte guidate.

M1 WAVE garantisce prestazioni di ripetibilità eccellenti (0,5 micron) ottenibili grazie all'assenza di rinvii meccanici della misura.

La tenuta stagna (IP67) dei componenti elettronici dell'intero insieme garantisce che M1 WAVE possa operare nei normali ambienti di officina con totale affidabilità di funzionamento.

#### Elettroniche di interfacciamento

M1 WAVE può colloquiare con elettroniche di visualizzazione MARPOSS: MERLIN, E9066 ed E4N WAVE. MARPOSS mette a disposizione il software per collegare M1 WAVE ad elettroniche a microprocessore di tipo commerciale.



The Bluetooh® word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Marposs is under license. Other trademarks and trade names are thoise of their respective owners.





## Specifiche tecniche capsula EBG(\*)

|                        |       |                  | campo diame       | trale                        |                              |                   |  |
|------------------------|-------|------------------|-------------------|------------------------------|------------------------------|-------------------|--|
| descrizione            | unità | 3 - 10,5 mm      |                   | 10,5 -                       | 26 - 300 mm                  |                   |  |
|                        |       | 3 - 8 mm         | 8 - 10,5 mm       | 10,5 - 13 mm                 | 13 - 26 mm                   | 20 - 300 MM       |  |
| CAMPO APPLICATIVO (1)  | mm    | Standard: 0,070  | Standard: 0.100   | Standard: 0,100              | Standard: 0,120              | Standard: 0.150   |  |
| CAMPO APPLICATIVO (T)  | mm    | Stallualu. U,U/U | Stallualu. U, IUU | (Max <sup>(2)</sup> : 0,200) | (Max <sup>(2)</sup> : 0,300) | Stallualu. U, 130 |  |
| FORZA DI MISURA        | N     | (0,6             | ± 0,1)            | $(0,7 \pm 0,2)$              | $(0,7 \pm 0,2)$              | $(0.9 \pm 0.2)$   |  |
| REPERIBILITÀ (2,77 σ)  | μm    | ≤ 0,5            |                   |                              |                              |                   |  |
| DERIVA TERMICA DI ZERO | μm/°C |                  | ≤ 0,3             |                              |                              |                   |  |

<sup>(\*)</sup> Per maggiori informazioni sulla capsula di misura si rimanda al catalogo M1 STAR EBG.

(1) CAMPO APPLICATIVO: esprime il campo di tolleranza del pezzo, misurabile dal tampone.

## Specifiche tecniche manico WAVE

|          | batterie    |          | tenuta | distanza di trasmissione | peso  | altre caratteristiche                                          |
|----------|-------------|----------|--------|--------------------------|-------|----------------------------------------------------------------|
| TIPO     | DURATA MIN. | RICARICA |        |                          |       | Bluetooth                                                      |
| Alkaline | 220 ore     | Х        | IP67   | finoa 10m (e oltre)      | 800 g | Autospegnimento<br>Rapida sostituzione della capsula di misura |
| NI-MH    | 180 ore     | esterna  |        |                          |       | Trasmissione della misura in tempo reale                       |

**TECNOLOGIA BLUETOOTH:** M1 WAVE è conforme alle norme EMC, FCC ed alle normative nazionali di riferimento.

**ALIMENTAZIONE ELETTRICA:** M1 WAVE può essere ordinato sia con batterie alcaline "formato C" che con batterie ricariabili del tipo NI-MH (ricaricabili esternamente con carica batterie commerciale). L'accesso al vano batterie è rapido e la sostituzione delle batterie è semplice e sicura. In un prossimo futuro altre opzioni di ricarica delle batterie saranno messe a disposizione degli utenti.

**DURATE DELLE BATTERIE:** M1 WAVE è in grado di lavorare con continuità (senza mai spegnersi) per almeno 220 ore (con batterie alcaline), ma tale tempo può aumentare decisamente sfruttando l'opzione di autospegnimento programmabile del sistema.

Il consumo delle batterie può così essere limitato al punto di richiedere la sostituzione delle stesse anche con cadenza annuale, programmando con attenzione la funzione di autospegnimento, ed in dipendenza dal tipo di batterie utilizzate, dalla frequenza del controllo e dalla velocità di acquisizione impostata.

**DISTANZA DI TRASMISSIONE:** M1 WAVE può colloquiare con l'elettronica di visualizzazione fino a 10 metri di distanza in ogni condizione. Distanze molto maggiori possono essere raggiunte in dipendenza dagli ostacoli presenti nell'area di lavoro in cui il tampone è utilizzato.

<sup>(2)</sup> Svitando i tastatori fissati all'equipaggio tramite Helicoli, i campi applicativi possono essere ampliati fino ai valori espressi in tabella.







I calibri pneumatici sono adatti per il controllo di manufatti con tolleranze molto strette (da IT2 a IT7) con rugosità inferiore 0,8  $\mu$ m Ra.

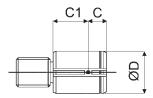
Il principio di misura è basato sulla lettura della variazione di pressione, proporzionale alle variazioni di distanza tra gli ugelli del tampone ed il pezzo in prova.

La misura viene effettuata mediante la tecnica del ponte pneumatico bilanciato, con trasduttori di pressione differenziali e amplificazione elettronica dei segnali.

Il segnale viene quindi convertito da analogico a digitale direttamente a bordo dei moduli convertitori Aria/Elettronica.

|          |       | foro pa | ssante | M1 AT | foro | cieco M | I1 AB |
|----------|-------|---------|--------|-------|------|---------|-------|
| ø D      | range | C       | C1     | E     | C    | C1      | F     |
| 3-4,15   | 0,03  | 6,5     | 31,5   | 1,8   | 3,5  | 34,5    | 4,4   |
| 4,15-6,3 | 0,05  | 9,5     | 28,5   | 2,5   | 3,5  | 34,5    | 4,8   |
| 6,3-10   | 0,1   | 13      | 25     | 3     | 3,5  | 34,5    | 5     |

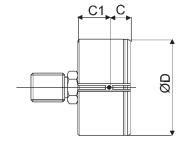







| foro passante M1 AT |       |    |    |   | foro | cieco N   | I1 AB |
|---------------------|-------|----|----|---|------|-----------|-------|
| ø D                 | range | C  | C1 | E | C    | <b>C1</b> | F     |
| 10-20               | 0,1   | 13 | 25 | 3 | 4    | 34        | 5,5   |
| 20-30               | 0,1   | 13 | 25 | 3 | 4    | 34        | 5,5   |
| 30-42               | 0,1   | 13 | 25 | 3 | 4    | 34        | 5,5   |
| 42-55               | 0,1   | 13 | 25 | 3 | 4    | 34        | 5,5   |








|        |       | foro pa | ssante | M1 AT | foro | cieco N   | I1 AB |
|--------|-------|---------|--------|-------|------|-----------|-------|
| ø D    | range | C       | C1     | E     | C    | <b>C1</b> | F     |
| 55-70  | 0,1   | 13      | 25     | 3     | 4    | 34        | 5,5   |
| 70-85  | 0,1   | 13      | 25     | 3     | 4    | 34        | 5,5   |
| 85-100 | 0,1   | 13      | 25     | 3     | 4    | 34        | 5,5   |











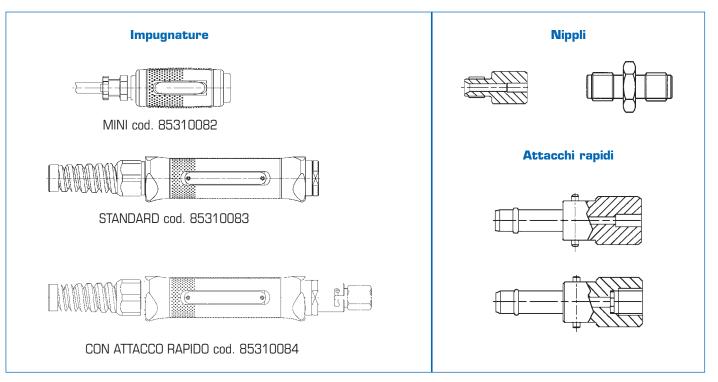
#### Dati costruttivi

| Diametri da - a                                     | ø 3 - 4,15   | ø 4,15 - 6,3 | ø 6,3 - 100            |                         |  |
|-----------------------------------------------------|--------------|--------------|------------------------|-------------------------|--|
|                                                     |              |              | per toll. da 6 a 30 µm | per toll. da 30 a 60 µm |  |
| Campo di misura del tampone                         | max 0,03 mm  | max 0,05 mm  | max 0,05 mm            | max 0,1 mm              |  |
| Campo massimo di tolleranza<br>misurabile suggerito | max 0,018 mm | max 0,03 mm  | max 0,03 mm            | max 0,06 mm             |  |
| Diametro ugello                                     | 0,64         | 1            | 1,5                    | 1,5                     |  |

Per tolleranze < 6 µm o > 60 µm si può eventualmente valutare l'esecuzione di strumenti speciali.

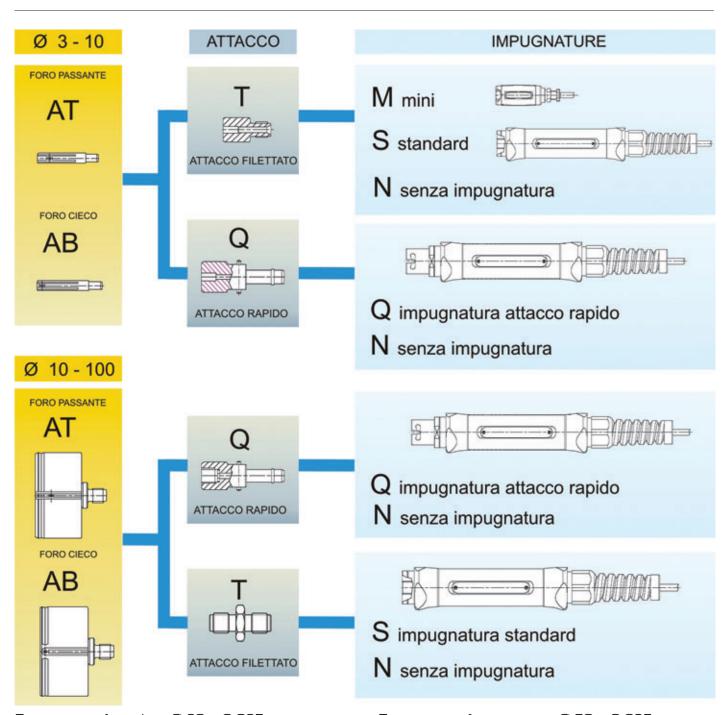
Per l'azzeramento vengono forniti anelli **DIN 2250 C** nelle dimensioni di **MIN** e **MAX** del campo di tolleranza del manufatto da controllare.

Nel caso di fornitura del solo tampone il cliente dovrà inviare ad MG gli anelli da usare per la calibrazione.


La rugosità massima del manufatto consigliata per l'impiego dei tamponi M1 Air è di 0,8 µm Ra.

In tal caso la differenza fra la misura ottenuta con M1 Air e analoga misurazione con strumenti a contatto è trascurabile.

Per rugosità del manufatto superiore a 0,8 µm Ra è necessaria un'analisi da parte del personale del personale tecnico MG.


|                                   | altri dati                                                                |
|-----------------------------------|---------------------------------------------------------------------------|
| Ripetibilità ( $\pm$ 2 $\sigma$ ) | < 0,5 μm                                                                  |
| Alimentazione aria                | aria secca accuratamente depurata e filtrata (grado di filtraggio < 5 μm) |
| Tubo di alimentazione aria        | ø interno 4 mm - lunghezza massima 2 metri                                |
| Consumo medio                     | < 1000 l/h                                                                |

#### **Accessori**









Tampone per foro cieco  $\emptyset$  20 ± 0,025 completo di impugnatura standard

M1 Air AB T S  $\emptyset$  20  $\pm$  0,025

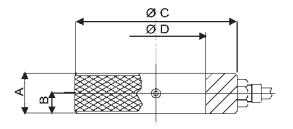
Tampone per foro passante  $\emptyset$  4 ± 0,01 completo di impugnatura min

M1 Air AT T M Ø 4  $\pm$  0,01

Tampone per foro passante  $\emptyset$  50  $\pm$  0,025 senza impugnatura

M1 Air AT T N Ø 50  $\pm$  0,025

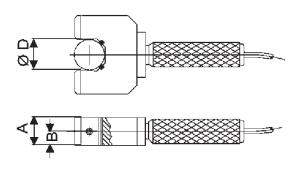
Tampone per foro passante  $\emptyset$  50  $\pm$  0,025 senza impugnatura con attacco rapido


M1 Air AT Q N  $\emptyset$  50  $\pm$  0,025





## APS anelli pneumatici


| esecuzione standard |       |    |    |     | ese    | cuzione | sott | otesta |        |
|---------------------|-------|----|----|-----|--------|---------|------|--------|--------|
| ø D                 | range | A  | В  | C   | codice | Α       | В    | C      | codice |
| 6-10                | 0,1   | 20 | 10 | 63  | AS-01  | 16      | 4    | 63     | AT-01  |
| 10-20               | 0,1   | 20 | 10 | 75  | AS-02  | 18      | 4    | 75     | AT-02  |
| 20-30               | 0,1   | 20 | 10 | 92  | AS-03  | 20      | 4    | 92     | AT-03  |
| 30-40               | 0,1   | 20 | 10 | 107 | AS-04  | 22      | 4    | 107    | AT-04  |
| 40-50               | 0,1   | 20 | 10 | 120 | AS-05  | 25      | 4    | 120    | AT-05  |





## FPS forcelle pneumatiche

|        | esecuzio |    |    | e standard | ese | cuzione | sottotesta |
|--------|----------|----|----|------------|-----|---------|------------|
| ø D    | range    | A  | В  | codice     | A   | В       | codice     |
| 20-30  | 0,10     | 20 | 10 | FS-01      | 20  | 4       | FT-01      |
| 30-40  | 0,10     | 20 | 10 | FS-02      | 20  | 4       | FT-02      |
| 40-50  | 0,10     | 20 | 10 | FS-03      | 20  | 4       | FT-03      |
| 50-60  | 0,10     | 20 | 10 | FS-04      | 20  | 4       | FT-04      |
| 60-70  | 0,10     | 20 | 10 | FS-05      | 20  | 4       | FT-05      |
| 70-80  | 0,10     | 20 | 10 | FS-06      | 20  | 4       | FT-06      |
| 80-90  | 0,10     | 20 | 10 | FS-07      | 20  | 4       | FT-07      |
| 90-100 | 0,10     | 20 | 10 | FS-08      | 20  | 4       | FT-08      |







Le forcelle variabili sono strumenti meccanici ideali per la misura di precisione di diametri esterni. In funzione della tipologia sono in grado di misurare:

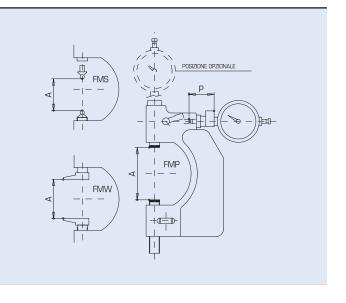
- Diametri esterni cilindrici.
- Distanza fra N denti su profili scanalati
- Diametro medio di filettature esterne
- · Quota rulli per ingranaggi o alberi scanalati

Le forcelle, nel loro campo di misura, sono totalmente riattrezzabili agendo su registrazioni micrometriche.

L'assestamento del pezzo nei tasti di misura o viceversa, della forcella sul pezzo da misurare, è garantito dalla forza di carico. E' ininfluente un eventuale contributo dell'operatore ai fini del risultato della misura. Precise, robuste ed affidabili, sono impiegate nei reparti di produzione.

- Corpi: per serie FC in fusione di alluminio, per serie FM in acciaio.
- Impugnature in plastica che garantiscono l'isolamento termico.
- · Cromatura dura sui perni scorrevoli.
- · Arresto regolabile per la centratura dei pezzi da controllare.
- Regolazione facile e veloce all'interno del campo di misura.
- Forza di misura variabile da 15 a 50 Newton.
- In alternativa a comparatori si possono montare sonde elettroniche con diametro d'attacco di 8 mm.
- Capruggini di vario tipo per controlli particolari.
- Cassetta di custodia e chiavi di dotazione fornite con ogni calibro.
- Per serie FC sono disponibili supporti per forcelle al fine di consentire l'accostamento dei pezzi da controllare al calibro, quando gli stessi sono di piccole dimensioni.

FMP per controllo diametri esterni cilindrici
 FMS per controllo ingranaggi o alberi scanalati
 FMW per controllo della distanza fra N denti


FMP - 1 range  $O \div 30 \text{ mm}$ FMP - 2 range  $30 \div 50 \text{ mm}$ FMS - 1 range  $0 \div 20 \text{ mm}$ FMS - 2 range  $20 \div 40 \text{ mm}$ FMW - 1 range  $0 \div 30 \text{ mm}$ 

FMW - 2 range 30 ÷ 50 mm

Carico di misura = ~ 3 N

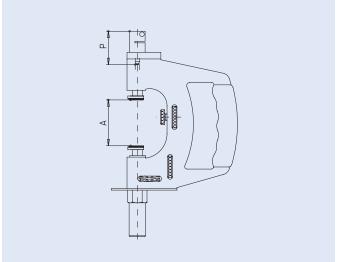
E' previsto un elevatore per consentire il sollevamento del tasto mobile per una corsa di 3 mm.

L'azzeramento si realizza con master di tipo diverso in funzione dei controlli da effettuare.





#### FCP forcella per controllo diametri esterni lisci


| FCP - 1 | range 0 ÷ 30 mm    |
|---------|--------------------|
| FCP - 2 | range 30 ÷ 60 mm   |
| FCP - 3 | range 60 ÷ 100 mm  |
| FCP - 4 | range 100 ÷ 150 mm |
| FCP - 5 | range 150 ÷ 200 mm |
| FCP - 6 | range 200 ÷ 250 mm |
| FCP - 7 | range 250 ÷ 300 mm |

Carico di misura = ~ 3 N (a richiesta 15 N).

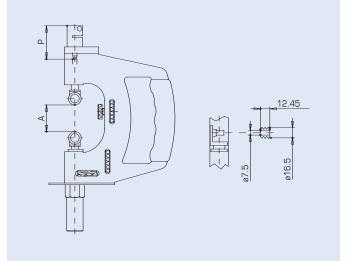
Le superfici di contatto sono in carburo di tungsteno. L'azzeramento può essere realizzato con blocchetti pian paralleli o con dischi calibrati.

Può essere fornito, opzionale, un elevatore che consente il sollevamento del tasto mobile.

Può essere fornito, opzionale, il relativo supporto (per FCP-1 ed FCP-2).



#### FCF forcella per controllo filettature esterne


| FCF - 1 | range O ÷ 27 mm    |
|---------|--------------------|
| FCF - 2 | range 27 ÷ 67 mm   |
| FCF - 3 | range 67 ÷ 117 mm  |
| FCF - 4 | range 117 ÷ 167 mm |
| FCF - 5 | range 167 ÷ 217 mm |
| FCF - 6 | range 217 ÷ 267 mm |

Carico di misura = ~ 3 N (a richiesta 15 N).

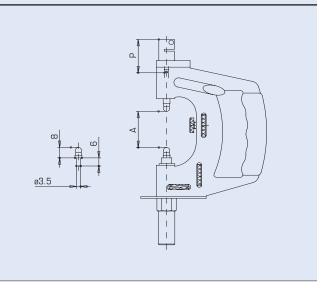
E' previsto un rullo cilindrico per facilitare l'ingresso dei pezzi in misurazione.

I rulli sono intercambiabili per consentire il controllo di filettature con passi diversi e vengono forniti separatamente. L'azzeramento può essere realizzato con tamponi filettati di riscontro.

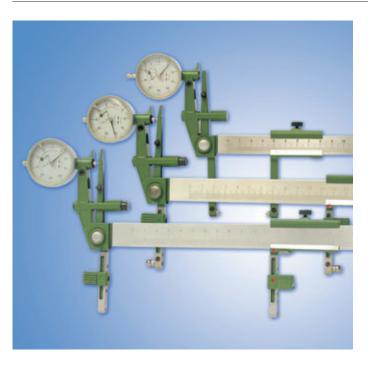
Può essere fornito, opzionale, il relativo supporto (per FCF-1 ed FCF-2).



#### FCS forcella per controllo ingranaggi o alberi scanalati


Carico di misura = ~ 3 N (a richiesta 15 N).

Le capruggini a sfera sono intercambiabili e fornibili in diversi diametri.


E' previsto un elevatore per consentire il sollevamento del tasto mobile per una corsa di 6 mm.

L'azzeramento si realizza con masters di tipo diverso in funzione dei controlli da effettuare.

Può essere fornito, opzionale, il relativo supporto (per FCS-1 ed FCS-2).







I calibri universali ACM sono strumenti in grado di misurare per comparazione dimensioni di interni ed esterni coprendo, con lo stesso strumento, campi da 200 a 600 mm.

In funzione della tipologia sono in grado di misurare:

- Diametri interni cilindrici.
- Diametri esterni cilindrici.
- Diametro medio di filettature interne.
- Diametro medio di filettature esterne.
- Quota rulli esterna per ingranaggi.
- Quota rulli interna per fori scanalati.
- Diametri interni di gole.

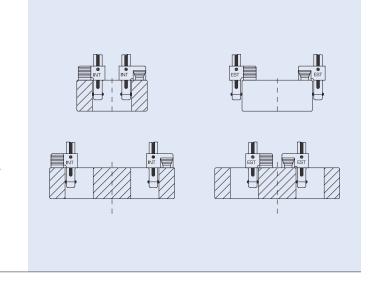
Per gli strumenti specifici per interni ed esterni, lisci e filettati, la misura si effettua per comparazione con la ricerca del punto di "inversione" (punto di massima lettura).

Facilmente riattrezzabili e con ampio campo di registrazione, sono impiegati sia nei reparti di produzione che nelle sale metrologiche.

#### Caratteristiche

- Corpi in microfusioni di AISI 420.
- Piedini di arresto regolabili per la profondità di controllo.
- Regolazione facile e veloce del posizionamento tasto fisso su asta graduata.
- Pulsante a scatto per l'inversione del carico della leva del tasto di lettura.
- Forza di misura 0,6, 0,8 N in funzione della lunghezza dei tasti.
- Comparatore centesimale in dotazione.
- In alternativa a comparatori si possono montare sonde elettroniche con diametro d'attacco di 8 mm.
- · Capruggini di vario tipo per controlli particolari.
- · Cassetta di custodia e chiavi di dotazione fornite con ogni calibro.
- Azzeramento dello strumento mediante apposita base e blocchetti pianparalleli.

## **Tipo UIE** calibro per controllo diametri interni ed esterni cilindrici


- **UIE 1** per campo 16,5÷200 mm profondità di controllo 48 mm
- **UIE 2** per campo 100÷500 mm profondità di controllo 82,5 mm
- **UIE 3** per campo 400÷1000 mm profondità di controllo 82,5 mm

Oltre ai tipi standard con le profondità indicate sono fornibili calibri con leve speciali per consentire controlli più profondi.

#### Esempio per l'ordine

Calibro universale ACM per diametri interni ed esterni cilindrici per un campo da 16,5÷200 mm: **ACM – UIE-1** Eventuale accessorio per l'azzeramento:

Base di azzeramento per UIE-1.

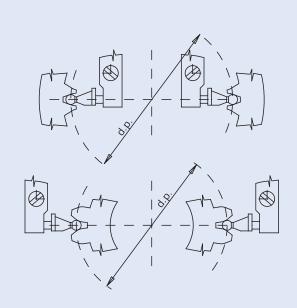




## **Tipo DIE** calibro per controllo dentature interne ed esterne

- DIE 1 fino a 200 mm profondità di controllo 48 mm
- DIE 2 per campo 100÷500 mm profondità di controllo 82 mm

Sono disponibili capruggini sferiche sia in acciaio temprato che in carburo di tungsteno.


Standard a magazzino sfere da Ø 2 a Ø 10 mm con progressione mm 0,5.

Possono essere fornite capruggini con diametro a richiesta.

#### Esempio per l'ordine

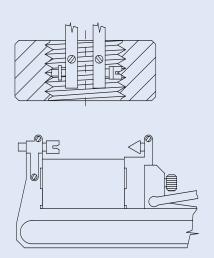
Calibro universale ACM per diametri dentature interne ed esterne per un campo da fino a 200 mm: **ACM – DIE-1**.

Eventuale accessorio per l'azzeramento: Base di azzeramento per **DIE-1**.



#### **Tipo FI** calibro per controllo filettature interne

- FI 1 per campo 24÷125 mm profondità di controllo 48 mm
- FI 2 per campo 100÷500 mm profondità di controllo 48 mm


Sono previste capruggini a 55° ed a 60° sia per i calibri che per le basi di azzeramento.

#### Esempio per l'ordine

Calibro universale ACM per diametri filettature interne per un campo da 24÷125 mm per filetti metrici (60°): **ACM – FI-1**.

#### Accessori

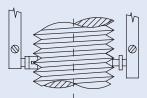
- Coppia di capruggini per filetti metrici 60°
- Base di azzeramento per Fl-1 completa di coppia di capruggini 60° per base di azzeramento Fl-1

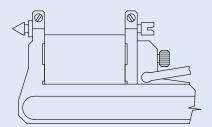




#### **Tipo FE** calibro per controllo filettature esterne

- **FE 1** per campo 20÷125 mm profondità di controllo 48 mm
- FE 2 per campo 100÷500 mm profondità di controllo 48 mm


Sono previste capruggini a 55° ed a 60° sia per i calibri che per le basi di azzeramento da ordinare in funzione del tipo di filetto da controllare.

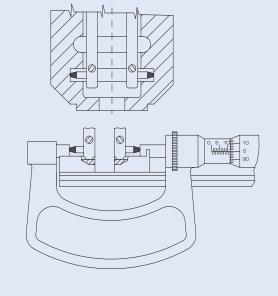

#### Esempio per l'ordine

Calibro universale ACM per diametri filettature esterne per un campo da 20÷125 mm per filetti metrici (60°): **ACM - FE-1**.

#### **Accessori**

- Coppia di capruggini per filetti metrici 60°
- Base di azzeramento per FE-1 completa di coppia di capruggini 60° per base di azzeramento FE-1






#### **Tipo GI** calibro per controllo gole interne

- GI 1 per campo 20÷130 mm profondità di controllo 48 mm sporgenza contatti mm 5,5
- GI 2 per campo 50÷300 mm profondità di controllo 82 mm sporgenza contatti mm 11
- GI 3 per campo 100÷500 mm profondità di controllo 82 mm sporgenza contatti mm 11

#### Esempio per l'ordine

Calibro universale ACM per diametri gole interne per un campo da 20÷130 mm: **ACM - GI-1**. Eventuale accessorio per l'azzeramento: Base di azzeramento per **GI-1**.







Il calibro EASY è uno strumento universale particolarmente adatto per la misura del diametro medio delle filettature interne. E' impiegato però, allo stesso modo, anche per filettature esterne, per profili scanalati e, con pattini speciali, per gole ed altri profili. La misurazione del diametro medio della filettatura permette di gestire il dato misurato con sistemi di controllo statistico di processo e valutare l'usura dei maschi

Nel caso di controllo di filettature interne i pattini sono dimensionati allo stesso modo del calibro passa del filetto da controllare.

Per l'azzeramento dello strumento viene utilizzato un master campione (nel caso di filettature si usa il calibro passa con diametro medio certificato).

#### Caratteristiche

- Corpo base in acciaio.
- Scorrimenti su cuscinetti assiali senza gioco.
- Predisposto per comparatori meccanici, elettronici e sensori.
- Attacco per sensore (comparatore) con Ø 8 sul lato del tasto mobile (a richiesta sul lato del tasto fisso).
- Pattini rapidamente sostituibili.
- Corsa totale mm. 6
- Forza standard 5N (altri valori a richiesta).

#### Sigla ESY - IP calibro versione portatile per interni

Montato su impugnatura il lega leggera con leva di ricarica. Accessori standard

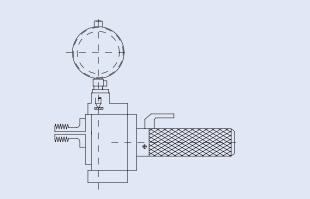
Pattini filettati a profilo completo per interni per diametri da mm 6÷100 a passo singolo oppure con n. passi.

#### Sigla **ESY - EP** calibro versione portatile per esterni

Montato su impugnatura il lega leggera con leva di ricarica. Accessori standard

Pattini filettati a profilo completo per esterni per diametri da mm 4 ÷10 a passo singolo oppure con n. passi.

#### Sigla **ESY - IB** calibro versione da banco per interni


Montato su base in acciaio con piedini e con leva di ricarica. Accessori standard


Pattini filettati a profilo completo per interni per diametri da mm 6÷100 a passo singolo oppure con n. passi.

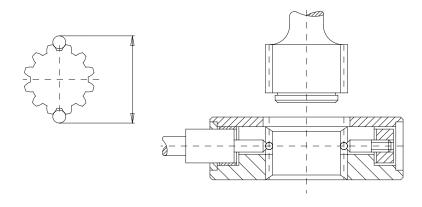
#### Sigla **ESY - EB** calibro versione da banco per esterni

Montato su base in acciaio con piedini e con leva di ricarica. Accessori standard

Pattini filettati a profilo completo per esterni per diametri da mm 4 ÷10 a passo singolo oppure con n. passi.

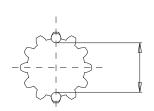


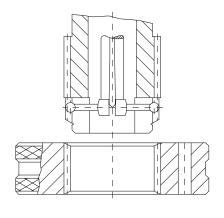



# Calibri per controllo



## diametro primitivo scanalati





## Controllo del diametro primitivo di alberi scanalati





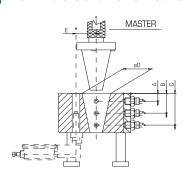
# Controllo del diametro primitivo di fori scanalati







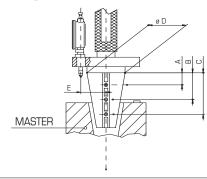



Per il controllo per variabili di manufatti conici sono proposte due soluzioni:

- Calibri a contatto con comparatori o sensori elettronici.
- · Calibri pneumatici.

Con i calibri pneumatici è possibile realizzare applicazioni di misura di elevata affidabilità e precisione. L'elaborazione elettronica permette di combinare i valori rilevati nelle varie sezioni di misura e riportare una precisa valutazione della conicità (caratteristica determinante per il manufatto).

Per il controllo dei coni per gli attacchi degli utensili MORSE - ISO - HSK, **MG** dispone di una serie di soluzioni di controllo con calibri per variabili o pneumatici.


## Anello pneumatico a 3 circuiti di misura per coni ISO 7/24 Tab. ISO 7388



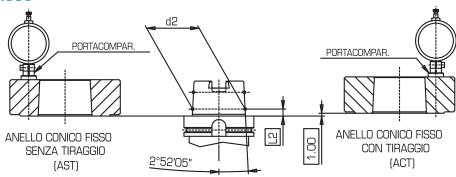
|      |       |     |      |      |    | Codice per ordine |             |  |  |  |
|------|-------|-----|------|------|----|-------------------|-------------|--|--|--|
| Tipo | ø D   | A   | В    | C    | E  | Calibro           | Master azz. |  |  |  |
| 30   | 31,75 | 7,5 | 24   | 40,5 | 21 | APN ISO 30        | APNM ISO 30 |  |  |  |
| 40   | 44,45 | 10  | 34   | 58   | 29 | APN ISO 40        | APNM ISO 40 |  |  |  |
| 45   | 57,15 | 10  | 41,5 | 73   | 35 | APN ISO 45        | APNM ISO 45 |  |  |  |
| 50   | 69,85 | 10  | 51   | 92   | 42 | APN ISO 50        | APNM ISO 50 |  |  |  |

| Accessori per misura tiraggio: attacco per sensore LVDT | <b>Codice per ordine</b><br>S.87888 - M11 |
|---------------------------------------------------------|-------------------------------------------|
| rinvio per comparatore Ø 40                             | 112405                                    |
| rinvio per comparatore Ø 60                             | 112305                                    |

## Tampone pneumatico a 3 circuiti di misura per coni ISO 7/24 Tab. ISO 297



|      |       |   |      |    |      | Codice per ordine |             |  |  |  |
|------|-------|---|------|----|------|-------------------|-------------|--|--|--|
| Tipo | ø D   | A | В    | C  | E    | Calibro           | Master azz. |  |  |  |
| 30   | 31,75 | 6 | 24,5 | 43 | 20,5 | TPN ISO 30        | TPNM ISO 30 |  |  |  |
| 40   | 44,45 | 6 | 32,5 | 59 | 26,5 | TPN ISO 40        | TPNM ISO 40 |  |  |  |
| 45   | 57,15 | 6 | 42   | 78 | 32,5 | TPN ISO 45        | TPNM ISO 45 |  |  |  |
| 50   | 69,85 | 6 | 51,5 | 97 | 39   | TPN ISO 50        | TPNM ISO 50 |  |  |  |

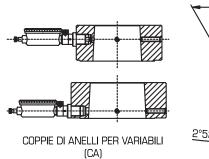

**Accessori per misura tiraggio:** attacco per sensore LVDT/comparatore

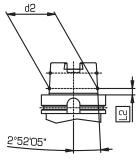
Codice per ordine S.87888 - M11



calibri per attacco maschio DIN 69893

## **Anello conico fisso**





|       | Attacco N | /laschio D |       | Dimensioni |      |         |      |
|-------|-----------|------------|-------|------------|------|---------|------|
|       |           | Forma      |       |            |      | d2      | L2   |
|       |           |            |       | 25 E       |      | 19,006  | 2,5  |
| 32 A  | 40 B      | 32 C       | 40 D  | 32 E       |      | 24,007  | 3,2  |
| 40 A  | 50 B      | 40 C       | 50 D  | 40 E       | 50 F | 30,007  | 4    |
| 50 A  | 63 B      | 50 C       | 63 D  | 50 E       | 63 F | 38,009  | 5    |
| 63 A  | 80 B      | 63 C       | 80 D  | 63 E       | 80 F | 48,010  | 6,3  |
| 80 A  | 100 B     | 80 C       | 100 D |            |      | 60,012  | 8    |
| 100 A | 125 B     | 100 C      | 125 D |            |      | 75,013  | 10   |
| 125 A | 160 B     | 125C       | 160D  |            | •    | 95,016  | 12,5 |
| 160 A |           | 160C       |       |            |      | 120,016 | 16   |

#### esempi per ordinazione

anello conico fisso senza tiraggio per forma 50A: **ACTS HSK 50A** anello conico fisso con tiraggio per forma 50A: **ACTT HSK 50A** accessorio portacomparatore: **S.87888 - M11** 

## Coppia di anelli conici per variabili

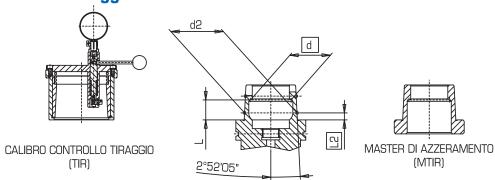






(MCA)

|       | Attacco N | /laschio D |       | Dimensioni |      |         |      |
|-------|-----------|------------|-------|------------|------|---------|------|
|       |           | Forma      |       |            |      | d2      | L2   |
|       |           |            |       | 25 E       |      | 19,006  | 2,5  |
| 32 A  | 40 B      | 32 C       | 40 D  | 32 E       |      | 24,007  | 3,2  |
| 40 A  | 50 B      | 40 C       | 50 D  | 40 E       | 50 F | 30,007  | 4    |
| 50 A  | 63 B      | 50 C       | 63 D  | 50 E       | 63 F | 38,009  | 5    |
| 63 A  | 80 B      | 63 C       | 80 D  | 63 E       | 80 F | 48,010  | 6,3  |
| 80 A  | 100 B     | 80 C       | 100 D |            |      | 60,012  | 8    |
| 100 A | 125 B     | 100 C      | 125 D |            |      | 75,013  | 10   |
| 125 A | 160 B     | 125C       | 160D  |            |      | 95,016  | 12,5 |
| 160 A |           | 160C       |       |            |      | 120,016 | 16   |

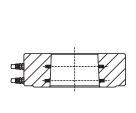

#### esempi per ordinazione

coppia di anelli per variabili per forma 50A: **ACV HSK 50A** master di azzeramento per anelli forma 50A: **ACVM HSK 50A** 

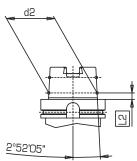


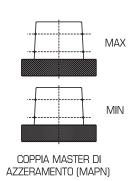
calibri per attacco maschio DIN 69893

## Calibri per controllo tiraggio




| Attacco Maschio DIN 69893     | Dimensioni |      |    |       |
|-------------------------------|------------|------|----|-------|
| Forma                         | d2         | L2   | d  | L     |
| 25 E                          | 19,006     | 2,5  | 15 | 7,21  |
| 32 A 40 B 32 C 40 D 32 E      | 24,007     | 3,2  | 19 | 8,92  |
| 40 A 50 B 40 C 50 D 40 E 50 F | 30,007     | 4    | 23 | 11,42 |
| 50 A 63 B 50 C 63 D 50 E 63 F | 38,009     | 5    | 29 | 14,13 |
| 63 A 80 B 63 C 80 D 63 E 80 F | 48,010     | 6,3  | 37 | 18,13 |
| 80 A 100 B 80 C 100 D         | 60,012     | 8    | 46 | 22,85 |
| 100 A125 B100 C125 D          | 75,013     | 10   | 58 | 28,56 |
| 125 A160 B 125C 160D          | 95,016     | 12,5 | 73 | 36,27 |
| 160 A 160C                    | 120,016    | 16   | 92 | 45,98 |


## esempi per ordinazione


calibro controllo tiraggio per forma 50A: **TIR HSK 50A** master per calibro controllo tiraggio per forma 50A: **TIRM HSK 50A** 

## Anello pneumatico a 2 circuiti di misura

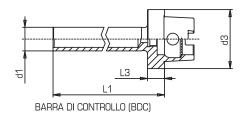


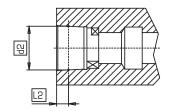
ANELLO PNEUMATICO (APN)





| A     | ttacco M | Dimens | Dimensioni |      |      |         |      |
|-------|----------|--------|------------|------|------|---------|------|
|       |          | Forma  |            |      |      | d2      | L2   |
|       |          |        |            | 25 E |      | 19,006  | 2,5  |
| 32 A  | 40 B     | 32 C   | 40 D       | 32 E |      | 24,007  | 3,2  |
| 40 A  | 50 B     | 40 C   | 50 D       | 40 E | 50 F | 30,007  | 4    |
| 50 A  | 63 B     | 50 C   | 63 D       | 50 E | 63 F | 38,009  | 5    |
| 63 A  | 80 B     | 63 C   | 80 D       | 63 E | 80 F | 48,010  | 6,3  |
| 80 A  | 100 B    | 80 C   | 100 D      |      |      | 60,012  | 8    |
| 100 A | 125 B    | 100 C  | 125 D      |      |      | 75,013  | 10   |
| 125 A | 160 B    | 125C   | 160D       |      |      | 95,016  | 12,5 |
| 160 A |          | 160C   |            |      |      | 120,016 | 16   |


#### esempi per ordinazione

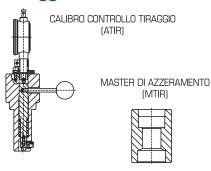

anello pneumatico per forma 50A: **APN HSK 50A** coppia di master per forma 50A: **APNM HSK 50A** 

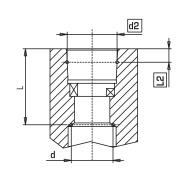


calibri per attacco femmina DIN 69063

## Barra di controllo







|       | Atta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | icco Fe | mmina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIN 69 | Dimensioni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |        |      |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--------|------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Forma   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d1     | L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d3 | L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d2  | L2 |        |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25 E   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25  | 10 | 18,998 | 2,5  |
| 32 A  | 40 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 C    | 40 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 E   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32  | 20 | 23,998 | 3,2  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 E   | 50 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40  | 20 | 29,997 | 4    |
| 40 A  | 50 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 C    | 50 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40  | 20 | 29,998 | 4    |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 E   | 63 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32 | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50  | 26 | 37,996 | 5    |
| 50 A  | 63 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 C    | 63 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32 | 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50  | 26 | 37,998 | 5    |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63 E   | 80 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40 | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63  | 26 | 47,995 | 6,3  |
| 63 A  | 80 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63 C    | 80 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 63  | 26 | 47,998 | 6,3  |
| 80 A  | 100 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80 C    | 100 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80  | 26 | 59,997 | 8    |
| 100 A | 125 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 C   | 125 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 | 29 | 74,997 | 10   |
| 125 A | 160 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 | 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125 | 29 | 94,996 | 12,5 |
|       | , and the second |         | , and the second |        | , and the second | Ť  | , and the second |     | Ť  | •      |      |

## esempi per ordinazione

barra per forma 50A: BDC HSK 50A

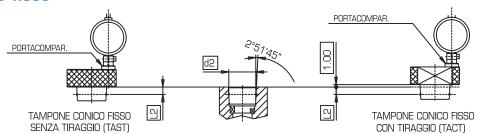
## Calibro controllo tiraggio





| At    | ttacco Fe | Dimensioni |       |      |      |          |      |
|-------|-----------|------------|-------|------|------|----------|------|
|       |           | Forma      |       |      |      | d2       | L2   |
|       |           |            |       | 25 E |      | 18,998   | 2,5  |
| 32 A  | 40 B      | 32 C       | 40 D  | 32 E |      | 23,998   | 3,2  |
| 40 A  | 50 B      | 40 C       | 50 D  | 40 E | 50 F | 29,997/8 | 4    |
| 50 A  | 63 B      | 50 C       | 63 D  | 50 E | 63 F | 37,996/8 | 5    |
| 63 A  | 80 B      | 63 C       | 80 D  | 63 E | 80 F | 47,995/8 | 6,3  |
| 80 A  | 100 B     | 80 C       | 100 D |      |      | 59,997   | 8    |
| 100 A | 125 B     | 100 C      | 125 D |      |      | 74,997   | 10   |
| 125 A | 160 B     |            |       |      |      | 94,996   | 12,5 |
| 160 A |           |            |       |      |      | 119,995  | 16   |

## esempi per ordinazione

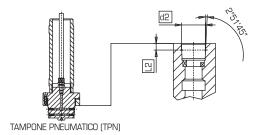

calibro controllo per forma 50A: **ATIR HSK 50A d... L...**master di azzeramento per calibro forma 50A: **ATIRM HSK 50A d... L...** 

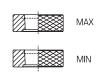
le dimensioni "d" ed "L" dovranno essere sempre specificate assieme al codice d'ordine



## calibri per attacco femmina DIN 69063

## **Tampone conico fisso**





| At    | ttacco Fe | mmina DI | N 69063 |      |      | Dimens  | ioni |
|-------|-----------|----------|---------|------|------|---------|------|
|       |           | Forma    |         |      |      | d2      | L2   |
|       |           |          |         | 25 E |      | 18,998  | 2,5  |
| 32 A  | 40 B      | 32 C     | 40 D    | 32 E |      | 23,998  | 3,2  |
|       |           |          |         | 40 E | 50 F | 29,997  | 4    |
| 40 A  | 50 B      | 40 C     | 50 D    |      |      | 29,998  | 4    |
|       |           |          |         | 50 E | 63 F | 37,996  | 5    |
| 50 A  | 63 B      | 50 C     | 63 D    |      |      | 37,998  | 5    |
|       |           |          |         | 63 E | 80 F | 47,995  | 6,3  |
| 63 A  | 80 B      | 63 C     | 80 D    |      |      | 47,998  | 6,3  |
| 80 A  | 100 B     | 80 C     | 100 D   |      |      | 59,997  | 8    |
| 100 A | 125 B     | 100 C    | 125 D   |      |      | 74,997  | 10   |
| 125 A | 160 B     |          |         |      |      | 94,996  | 12,5 |
| 160 A |           |          |         |      |      | 119,995 | 16   |

#### esempi per ordinazione

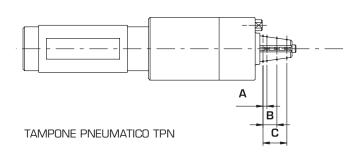
tampone conico senza tiraggio per forma 50A: **TAST HSK 50A** tampone conico con tiraggio per forma 50A: **TACT HSK 50A** accessorio portacomparatore: **S.87888 - M11** 

## Tampone pneumatico a 2 circuiti di misura





COPPIA MASTER DI AZZERAMENTO (MTPN)


| Ai    | ttacco Fe | mmina DI | N 69063 |      |      | Dimens  | Dimensioni |  |
|-------|-----------|----------|---------|------|------|---------|------------|--|
|       |           | Forma    |         |      |      | d2      | L2         |  |
|       |           |          |         | 25 E |      | 18,998  | 2,5        |  |
| 32 A  | 40 B      | 32 C     | 40 D    | 32 E |      | 23,998  | 3,2        |  |
|       |           |          |         | 40 E | 50 F | 29,997  | 4          |  |
| 40 A  | 50 B      | 40 C     | 50 D    |      |      | 29,998  | 4          |  |
|       |           |          |         | 50 E | 63 F | 37,996  | 5          |  |
| 50 A  | 63 B      | 50 C     | 63 D    |      |      | 37,998  | 5          |  |
|       |           |          |         | 63 E | 80 F | 47,995  | 6,3        |  |
| 63 A  | 80 B      | 63 C     | 80 D    |      |      | 47,998  | 6,3        |  |
| 80 A  | 100 B     | 80 C     | 100 D   |      |      | 59,997  | 8          |  |
| 100 A | 125 B     | 100 C    | 125 D   |      |      | 74,997  | 10         |  |
| 125 A | 160 B     |          |         |      |      | 94,996  | 12,5       |  |
| 160 A |           |          |         |      |      | 119,995 | 16         |  |

#### esempi per ordinazione

tampone pneumatico per forma 50A: **TPN HSK 50A** coppia di master di azzeramento per forma 50A: **TPNM HSK 50A** 



## Tamponi Pneumatici a 2 o 3 circuiti di misura per controllo sedi pinze ER DIN 6499-C





| Tipo  | ø D | A   | В     | C    |
|-------|-----|-----|-------|------|
| ER 11 | 11  | 2,5 | 8,20  | -    |
| ER 16 | 16  | 3   | 9,15  | 15,3 |
| ER 20 | 20  | 3   | 10,75 | 18,5 |
| ER 25 | 25  | 3   | 11,85 | 20,7 |
| ER 32 | 32  | 3   | 14,50 | 26   |
| ER 40 | 40  | 3   | 16,25 | 29,5 |

## esempi per ordinazione

tampone pneumatico per pinza ER 20: **TPN ER 20** master di azzeramento per pinza ER 20: **TPN ERM 20** 

MG è in grado di fornire strumenti per il controllo di qualsiasi tipo di cono, come ad esempio: ugelli del gas, parti coniche di protesi, ecc.









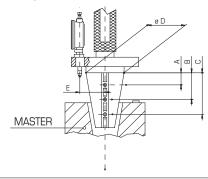



Per il controllo per variabili di manufatti conici sono proposte due soluzioni:

- Calibri a contatto con comparatori o sensori elettronici.
- · Calibri pneumatici.

Con i calibri pneumatici è possibile realizzare applicazioni di misura di elevata affidabilità e precisione. L'elaborazione elettronica permette di combinare i valori rilevati nelle varie sezioni di misura e riportare una precisa valutazione della conicità (caratteristica determinante per il manufatto).

Per il controllo dei coni per gli attacchi degli utensili MORSE - ISO - HSK, **MG** dispone di una serie di soluzioni di controllo con calibri per variabili o pneumatici.


## Anello pneumatico a 3 circuiti di misura per coni ISO 7/24 Tab. ISO 7388



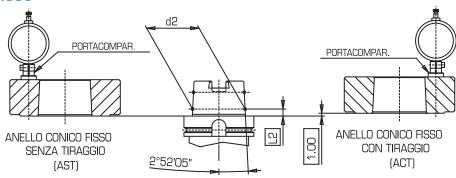
|      |       |     |      |      |    | Codice per ordine |             |  |  |  |  |
|------|-------|-----|------|------|----|-------------------|-------------|--|--|--|--|
| Tipo | ø D   | A   | В    | C    | E  | Calibro           | Master azz. |  |  |  |  |
| 30   | 31,75 | 7,5 | 24   | 40,5 | 21 | APN ISO 30        | APNM ISO 30 |  |  |  |  |
| 40   | 44,45 | 10  | 34   | 58   | 29 | APN ISO 40        | APNM ISO 40 |  |  |  |  |
| 45   | 57,15 | 10  | 41,5 | 73   | 35 | APN ISO 45        | APNM ISO 45 |  |  |  |  |
| 50   | 69,85 | 10  | 51   | 92   | 42 | APN ISO 50        | APNM ISO 50 |  |  |  |  |

| Accessori per misura tiraggio: attacco per sensore LVDT | <b>Codice per ordine</b><br>S.87888 - M11 |
|---------------------------------------------------------|-------------------------------------------|
| rinvio per comparatore Ø 40                             | 112405                                    |
| rinvio per comparatore Ø 60                             | 112305                                    |

## Tampone pneumatico a 3 circuiti di misura per coni ISO 7/24 Tab. ISO 297



|      |       |   |      |    |      | Codice per ordine |             |  |  |  |
|------|-------|---|------|----|------|-------------------|-------------|--|--|--|
| Tipo | ø D   | A | В    | C  | E    | Calibro           | Master azz. |  |  |  |
| 30   | 31,75 | 6 | 24,5 | 43 | 20,5 | TPN ISO 30        | TPNM ISO 30 |  |  |  |
| 40   | 44,45 | 6 | 32,5 | 59 | 26,5 | TPN ISO 40        | TPNM ISO 40 |  |  |  |
| 45   | 57,15 | 6 | 42   | 78 | 32,5 | TPN ISO 45        | TPNM ISO 45 |  |  |  |
| 50   | 69,85 | 6 | 51,5 | 97 | 39   | TPN ISO 50        | TPNM ISO 50 |  |  |  |


**Accessori per misura tiraggio:** attacco per sensore LVDT/comparatore

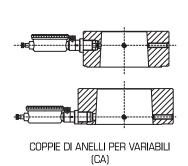
Codice per ordine S.87888 - M11

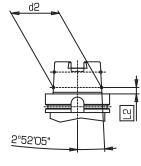


calibri per attacco maschio DIN 69893

## **Anello conico fisso**




| L2     |
|--------|
|        |
| 6 2,5  |
| 7 3,2  |
| 7 4    |
| 9 5    |
| 0 6,3  |
| 2 8    |
| 3 10   |
| 6 12,5 |
| 6 16   |
|        |


Vengono forniti completi di accessorio portacomparatore, escluso il comparatore.

#### esempi per ordinazione

anello conico fisso senza tiraggio per forma 50A: **ACTS HSK 50A** anello conico fisso con tiraggio per forma 50A: **ACTT HSK 50A** 

## Coppia di anelli conici per variabili



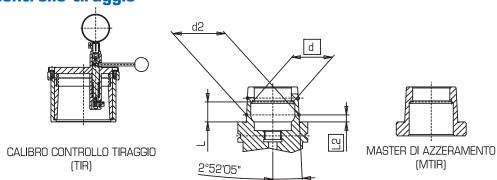




MASTER DI AZZERAMENTO (MCA)

|       | Attacco N | Dimens | Dimensioni |      |      |         |      |
|-------|-----------|--------|------------|------|------|---------|------|
|       |           | d2     | L2         |      |      |         |      |
|       |           |        |            | 25 E |      | 19,006  | 2,5  |
| 32 A  | 40 B      | 32 C   | 40 D       | 32 E |      | 24,007  | 3,2  |
| 40 A  | 50 B      | 40 C   | 50 D       | 40 E | 50 F | 30,007  | 4    |
| 50 A  | 63 B      | 50 C   | 63 D       | 50 E | 63 F | 38,009  | 5    |
| 63 A  | 80 B      | 63 C   | 80 D       | 63 E | 80 F | 48,010  | 6,3  |
| 80 A  | 100 B     | 80 C   | 100 D      |      |      | 60,012  | 8    |
| 100 A | 125 B     | 100 C  | 125 D      |      |      | 75,013  | 10   |
| 125 A | 160 B     | 125C   | 160D       |      | ·    | 95,016  | 12,5 |
| 160 A |           | 160C   |            |      |      | 120,016 | 16   |

Vengono forniti completi di accessorio portacomparatore, escluso il comparatore.


#### esempi per ordinazione

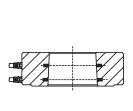
coppia di anelli per variabili per forma 50A: **ACV HSK 50A** master di azzeramento per anelli forma 50A: **ACVM HSK 50A** 



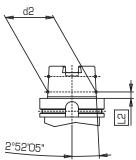
calibri per attacco maschio DIN 69893

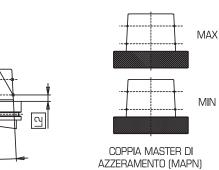
## Calibri per controllo tiraggio




| Attacco Maschio DIN 69893     | Dimensioni |      |    |       |
|-------------------------------|------------|------|----|-------|
| Forma                         | d2         | L2   | d  | L     |
| 25 E                          | 19,006     | 2,5  | 15 | 7,21  |
| 32 A 40 B 32 C 40 D 32 E      | 24,007     | 3,2  | 19 | 8,92  |
| 40 A 50 B 40 C 50 D 40 E 50 F | 30,007     | 4    | 23 | 11,42 |
| 50 A 63 B 50 C 63 D 50 E 63 F | 38,009     | 5    | 29 | 14,13 |
| 63 A 80 B 63 C 80 D 63 E 80 F | 48,010     | 6,3  | 37 | 18,13 |
| 80 A 100 B 80 C 100 D         | 60,012     | 8    | 46 | 22,85 |
| 100 A125 B100 C125 D          | 75,013     | 10   | 58 | 28,56 |
| 125 A160 B 125C 160D          | 95,016     | 12,5 | 73 | 36,27 |
| 160 A 160C                    | 120,016    | 16   | 92 | 45,98 |

Vengono forniti completi di accessorio portacomparatore, escluso il comparatore.


#### esempi per ordinazione


calibro controllo tiraggio per forma 50A: **TIR HSK 50A** master per calibro controllo tiraggio per forma 50A: **TIRM HSK 50A** 

## Anello pneumatico a 2 circuiti di misura

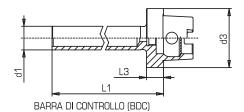


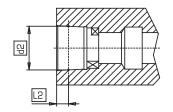
ANELLO PNEUMATICO (APN)





| A     | ttacco M | Dimens | Dimensioni |      |      |         |      |
|-------|----------|--------|------------|------|------|---------|------|
|       |          | Forma  |            |      |      | d2      | L2   |
|       |          |        |            | 25 E |      | 19,006  | 2,5  |
| 32 A  | 40 B     | 32 C   | 40 D       | 32 E |      | 24,007  | 3,2  |
| 40 A  | 50 B     | 40 C   | 50 D       | 40 E | 50 F | 30,007  | 4    |
| 50 A  | 63 B     | 50 C   | 63 D       | 50 E | 63 F | 38,009  | 5    |
| 63 A  | 80 B     | 63 C   | 80 D       | 63 E | 80 F | 48,010  | 6,3  |
| 80 A  | 100 B    | 80 C   | 100 D      |      |      | 60,012  | 8    |
| 100 A | 125 B    | 100 C  | 125 D      |      |      | 75,013  | 10   |
| 125 A | 160 B    | 125C   | 160D       |      | ·    | 95,016  | 12,5 |
| 160 A |          | 160C   |            |      |      | 120,016 | 16   |


#### esempi per ordinazione

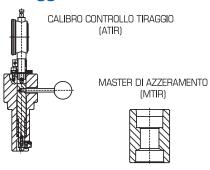

anello pneumatico per forma 50A: **APN HSK 50A** coppia di master per forma 50A: **APNM HSK 50A** 

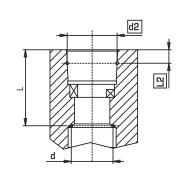


calibri per attacco femmina DIN 69063

## Barra di controllo







|       | Atta  | icco Fe | mmina | DIN 69 | 9063 |    |     | Dimens | sioni |         |      |
|-------|-------|---------|-------|--------|------|----|-----|--------|-------|---------|------|
|       |       | Forma   |       |        | d1   | L1 | d3  | L3     | d2    | L2      |      |
|       |       |         |       | 25 E   |      | 20 | 140 | 25     | 10    | 18,998  | 2,5  |
| 32 A  | 40 B  | 32 C    | 40 D  | 32 E   |      | 24 | 180 | 32     | 20    | 23,998  | 3,2  |
|       |       |         |       | 40 E   | 50 F | 24 | 180 | 40     | 20    | 29,997  | 4    |
| 40 A  | 50 B  | 40 C    | 50 D  |        |      | 24 | 180 | 40     | 20    | 29,998  | 4    |
|       |       |         |       | 50 E   | 63 F | 32 | 236 | 50     | 26    | 37,996  | 5    |
| 50 A  | 63 B  | 50 C    | 63 D  |        |      | 32 | 236 | 50     | 26    | 37,998  | 5    |
|       |       |         |       | 63 E   | 80 F | 40 | 346 | 63     | 26    | 47,995  | 6,3  |
| 63 A  | 80 B  | 63 C    | 80 D  |        |      | 40 | 346 | 63     | 26    | 47,998  | 6,3  |
| 80 A  | 100 B | 80 C    | 100 D |        |      | 40 | 346 | 80     | 26    | 59,997  | 8    |
| 100 A | 125 B | 100 C   | 125 D |        |      | 40 | 349 | 100    | 29    | 74,997  | 10   |
| 125 A | 160 B |         |       |        |      | 40 | 349 | 125    | 29    | 94,996  | 12,5 |
| 160 A |       |         |       |        |      | 40 | 349 | 160    | 31    | 119.995 | 16   |

## esempi per ordinazione

barra per forma 50A: BDC HSK 50A

## Calibro controllo tiraggio

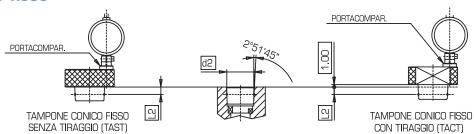




| At    | ttacco Fe | mmina DI |       | Dimensioni |      |          |      |
|-------|-----------|----------|-------|------------|------|----------|------|
|       |           | Forma    |       |            |      | d2       | L2   |
|       |           |          |       | 25 E       |      | 18,998   | 2,5  |
| 32 A  | 40 B      | 32 C     | 40 D  | 32 E       |      | 23,998   | 3,2  |
| 40 A  | 50 B      | 40 C     | 50 D  | 40 E       | 50 F | 29,997/8 | 4    |
| 50 A  | 63 B      | 50 C     | 63 D  | 50 E       | 63 F | 37,996/8 | 5    |
| 63 A  | 80 B      | 63 C     | 80 D  | 63 E       | 80 F | 47,995/8 | 6,3  |
| 80 A  | 100 B     | 80 C     | 100 D |            |      | 59,997   | 8    |
| 100 A | 125 B     | 100 C    | 125 D |            |      | 74,997   | 10   |
| 125 A | 160 B     |          |       |            |      | 94,996   | 12,5 |
| 160 A |           |          |       |            |      | 119,995  | 16   |

Vengono forniti completi di accessorio portacomparatore, escluso il comparatore.

#### esempi per ordinazione


calibro controllo per forma 50A: **ATIR HSK 50A d... L...**master di azzeramento per calibro forma 50A: **ATIRM HSK 50A d... L...** 

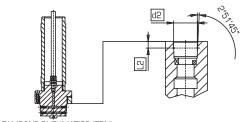
le dimensioni "d" ed "L" dovranno essere sempre specificate assieme al codice d'ordine



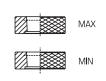
calibri per attacco femmina DIN 69063

## **Tampone conico fisso**




| At    | ttacco Fe | Dimens | ioni  |      |      |         |      |
|-------|-----------|--------|-------|------|------|---------|------|
|       |           | Forma  |       |      |      | d2      | L2   |
|       |           |        |       | 25 E |      | 18,998  | 2,5  |
| 32 A  | 40 B      | 32 C   | 40 D  | 32 E |      | 23,998  | 3,2  |
|       |           |        |       | 40 E | 50 F | 29,997  | 4    |
| 40 A  | 50 B      | 40 C   | 50 D  |      |      | 29,998  | 4    |
|       |           |        |       | 50 E | 63 F | 37,996  | 5    |
| 50 A  | 63 B      | 50 C   | 63 D  |      |      | 37,998  | 5    |
|       |           |        |       | 63 E | 80 F | 47,995  | 6,3  |
| 63 A  | 80 B      | 63 C   | 80 D  |      |      | 47,998  | 6,3  |
| 80 A  | 100 B     | 80 C   | 100 D |      |      | 59,997  | 8    |
| 100 A | 125 B     | 100 C  | 125 D |      |      | 74,997  | 10   |
| 125 A | 160 B     |        |       |      |      | 94,996  | 12,5 |
| 160 A |           |        |       |      |      | 119,995 | 16   |

Vengono forniti completi di accessorio portacomparatore, escluso il comparatore.


#### esempi per ordinazione

tampone conico senza tiraggio per forma 50A: **TAST HSK 50A** tampone conico con tiraggio per forma 50A: **TACT HSK 50A** 

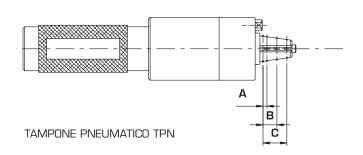
## Tampone pneumatico a 2 circuiti di misura

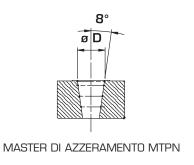






COPPIA MASTER DI AZZERAMENTO (MTPN)


| At    | ttacco Fe | Dimens | Dimensioni |      |      |         |      |
|-------|-----------|--------|------------|------|------|---------|------|
|       |           | Forma  |            |      |      | d2      | L2   |
|       |           |        |            | 25 E |      | 18,998  | 2,5  |
| 32 A  | 40 B      | 32 C   | 40 D       | 32 E |      | 23,998  | 3,2  |
|       |           |        |            | 40 E | 50 F | 29,997  | 4    |
| 40 A  | 50 B      | 40 C   | 50 D       |      |      | 29,998  | 4    |
|       |           |        |            | 50 E | 63 F | 37,996  | 5    |
| 50 A  | 63 B      | 50 C   | 63 D       |      |      | 37,998  | 5    |
|       |           |        |            | 63 E | 80 F | 47,995  | 6,3  |
| 63 A  | 80 B      | 63 C   | 80 D       |      |      | 47,998  | 6,3  |
| 80 A  | 100 B     | 80 C   | 100 D      |      |      | 59,997  | 8    |
| 100 A | 125 B     | 100 C  | 125 D      |      |      | 74,997  | 10   |
| 125 A | 160 B     |        |            |      |      | 94,996  | 12,5 |
| 160 A |           |        |            |      |      | 119,995 | 16   |


#### esempi per ordinazione

tampone pneumatico per forma 50A: **TPN HSK 50A** coppia di master di azzeramento per forma 50A: **TPNM HSK 50A** 



## Tamponi Pneumatici a 2 o 3 circuiti di misura per controllo sedi pinze ER DIN 6499-C





| Tipo  | ø D | A   | В     | C    |
|-------|-----|-----|-------|------|
| ER 11 | 11  | 2,5 | 8,20  | -    |
| ER 16 | 16  | 3   | 9,15  | 15,3 |
| ER 20 | 20  | 3   | 10,75 | 18,5 |
| ER 25 | 25  | 3   | 11,85 | 20,7 |
| ER 32 | 32  | 3   | 14,50 | 26   |
| ER 40 | 40  | 3   | 16,25 | 29,5 |

## esempi per ordinazione

tampone pneumatico per pinza ER 20: **TPN ER 20** master di azzeramento per pinza ER 20: **TPN ERM 20** 

MG è in grado di fornire strumenti per il controllo di qualsiasi tipo di cono, come ad esempio: ugelli del gas, parti coniche di protesi, ecc.





